吡非尼酮对IgA肾病患者血清IgA1诱导人肾小球系膜细胞增殖的影响

占小江, 付梦茹, 廖露, 梅文娟, 朱恒梅, 魏昕, 肖俊

PDF(1074 KB)
中华肾脏病杂志 ›› 2021, Vol. 37 ›› Issue (12) : 1008-1014. DOI: 10.3760/cma.j.cn441217-20210917-00152
基础研究

吡非尼酮对IgA肾病患者血清IgA1诱导人肾小球系膜细胞增殖的影响

作者信息 +

Effect of pirfenidone on the proliferation of human glomerular mesangial cells induced by serum IgA1 of IgA nephropathy patients

Author information +
History +

摘要

目的 探讨吡非尼酮(pirfenidone,PFD)对IgA肾病(IgA nephropathy,IgAN)患者血清IgA1诱导人肾小球系膜细胞(HMC)增殖的作用及其可能机制。 方法 采用Jacalin亲和层析联合Sephacryl S-200凝胶过滤法纯化IgAN患者血清IgA1并将单体热聚合为聚合IgA1(aIgA1)。CCK8法摸索PFD作用浓度及时间,分为空白对照组、IgA1(0.5 mg/ml)组、IgA1(0.5 mg/ml)+PFD(2 mmol/L)组。采用CCK8法检测各组系膜细胞增殖情况;流式细胞术检测细胞周期变化,并计算系膜细胞增殖指数;Western印迹法检测转化生长因子β1(TGF-β1)、Smad4、Smad7、纤维连接蛋白、Ⅳ型胶原蛋白(collagen Ⅳ)的蛋白表达水平;实时定量PCR检测各组TGF-β1、Smad4、Smad7、纤维连接蛋白、collagen Ⅳ的mRNA表达水平。 结果 与空白对照组相比,aIgA1诱导的HMC增殖显著增加(P<0.05);PFD处理后,HMC增殖活力显著被抑制(P<0.01);与空白对照组相比,IgA1组HMC中G1期细胞明显减少、S期细胞明显增多,细胞增殖指数增加(均P<0.05);与IgA1组相比,IgA1+PFD组HMC中G1期细胞明显增多、S期及G2/M期细胞明显减少,细胞增殖指数下降(均P<0.05)。与空白对照组相比,aIgA1刺激下HMC中collagen Ⅳ、纤维连接蛋白、Smad4蛋白及mRNA表达均明显增加,TGF-β1蛋白表达增加,Smad7蛋白表达下降(均P<0.05);PFD处理后,HMC中collagen Ⅳ、纤维连接蛋白、Smad4蛋白及mRNA表达均明显下降,TGF-β1蛋白表达下调,Smad7蛋白表达上调(均P<0.05);各组TGF-β1和Smad7 mRNA表达在PFD处理前后差异均无统计学意义(均P>0.05)。 结论 PFD可增加HMC在G1期的阻滞,抑制IgAN患者aIgA1诱导的HMC增殖,减少细胞外基质的产生,其机制可能与Smad7表达上调及TGF-β1/Smad4通路下调有关。

Abstract

Objective To investigate the effect of pirfenidone (PFD) on the proliferation of human glomerular mesangial cells (HMC) stimulated by serum IgA1 in patients with IgA nephropathy (IgAN) and its possible mechanism. Methods Serum IgA1 of IgAN patients was purified by Jacalin affinity chromatography combined with Sephacryl S-200 gel filtration, and then heated to aggregated form (aIgA1). CCK8 method was used to confirm the concentration and time of PFD. The cells were divided into blank control group, IgA1 (0.5 mg/ml) group and IgA1 (0.5 mg/ml)+PFD (2 mmol/L) group. The CCK8 method was used to detect proliferation of mesangial cells. The cell cycle was detected by flow cytometry, and the proliferation index of mesangial cells was calculated. The expression levels of transforming growth factor β1 (TGF-β1), Smad4, Smad7, fibronectin (FN) and collagen Ⅳ protein and mRNA were detected through Western blotting and real-time PCR. Results Compared with blank control group, the proliferation of HMC was promoted significantly by aIgA1 (P<0.05). After PFD treatment, the proliferation of HMC was significantly inhibited (P<0.01). Compared with the blank control group, the number of G1 phase cells decreased, the number of S phase cells and cell proliferation index increased in IgA1 group (all P<0.05). Compared with IgA1 group, the number of cells in G1 phase increased significantly, the number of cells in S phase and G2/M phase decreased significantly, and the cell proliferation index decreased in IgA1+PFD group (all P<0.05). Western blotting and real-time PCR results showed that compared with the blank control group, the protein and mRNA expressions of collagen Ⅳ, FN and Smad4 in HMC stimulated by aIgA1 were significantly increased, while TGF-β1 protein expression was increased and Smad7 protein expression was decreased (all P<0.05). After PFD treatment, the protein and mRNA expression of collagen Ⅳ, FN and Smad4 in HMC was significantly decreased, while TGF-β1 protein expression was obviously decreased, and Smad7 protein was up-regulated (all P<0.05). There was no significant difference in the mRNA expression of TGF-β1 and Smad7 in each group before and after PFD treatment (all P>0.05). Conclusions PFD can increase the arrest of HMC in G1 phase, inhibit the proliferation of HMC induced by aIgA1 of IgAN patients, and reduce the production of extracellular matrix. The mechanism may be related to up-regulation of Smad7 expression and down-regulation of TGF-β1/Smad4 pathway.

关键词

肾小球肾炎,IgA / 肾小球系膜细胞 / 细胞增殖 / 吡非尼酮 / TGF-β1/Smad4信号通路

Key words

Glomerulonephritis, IgA / Mesangial cells / Cell proliferation / Pirfenidone / TGF-β1/Smad4 pathway

编辑

彭苗

引用本文

导出引用
占小江 , 付梦茹 , 廖露 , 梅文娟 , 朱恒梅 , 魏昕 , 肖俊. 吡非尼酮对IgA肾病患者血清IgA1诱导人肾小球系膜细胞增殖的影响[J]. 中华肾脏病杂志, 2021, 37(12): 1008-1014. DOI: 10.3760/cma.j.cn441217-20210917-00152.
Zhan Xiaojiang , Fu Mengru , Liao Lu , Mei Wenjuan , Zhu Hengmei , Wei Xin , Xiao Jun. Effect of pirfenidone on the proliferation of human glomerular mesangial cells induced by serum IgA1 of IgA nephropathy patients[J]. Chinese Journal of Nephrology, 2021, 37(12): 1008-1014. DOI: 10.3760/cma.j.cn441217-20210917-00152.
IgA肾病(IgA nephropathy,IgAN)是全球范围内最常见的原发性肾小球肾炎之一,该病起病隐匿,25%~30%的患者会在20~25年内进展至终末期肾病[1]。系膜细胞增殖和细胞外基质增加是IgAN发生发展的关键事件。低糖基化的IgA1聚合物易在肾脏系膜区沉积,结合并活化系膜细胞,继而产生多种细胞因子,激活各种细胞信号通路,促进系膜细胞增生和细胞外基质堆积,最终导致肾脏损伤[2]。既往的研究及我们的前期研究发现转化生长因子β1(transforming growth factor β1,TGF-β1)在异常低糖基化IgA1产生、肾小球系膜区IgA免疫复合物沉积、系膜细胞活化增殖及肾小球硬化和间质纤维化多个环节中均发挥重要作用[3]。吡非尼酮(pirfenidone,PFD)是一种广谱的抗纤维化药物,其主要作用靶因子是TGF-β1及其下游的一些细胞因子,主要应用于肺纤维化治疗,对肾间质纤维化、肝纤维化等也有较好疗效。目前PFD在IgAN中的作用尚未见报道。本研究拟通过体外实验观察PFD对IgAN患者血清IgA1诱导人肾小球系膜细胞(human mesangial cells,HMC)增殖的影响,并探讨其相关机制,试图寻找治疗IgAN的新型潜在药物。

材料与方法

1. 细胞和试剂: HMC(CL-0619,武汉普诺赛);PFD(艾瑞思,北京康蒂尼药业);胎牛血清、RPMI1640培养基(美国Gibco);兔抗Smad4抗体、兔抗纤维连接蛋白(fibronectin,FN)抗体(美国Proteintech);兔抗TGF-β1抗体、兔抗Smad7抗体(北京博奥森);兔抗Ⅳ型胶原蛋白(collagen Ⅳ)抗体(美国Affinity);鼠抗GAPDH单克隆抗体、辣根过氧化物酶标记山羊抗小鼠或兔IgG抗体(北京中杉金桥);CCK8检测试剂盒(英国Abcam);反转录试剂盒(北京全式金);实时定量PCR试剂盒(美国Invitrogen);蛋白、RNA共提取试剂盒(美国OMEGA);细胞周期试剂盒(杭州联科生物);Jacalin琼脂糖(美国Thermo);蜜二糖(山东西亚化工);Jacalin-Agarose亲和层析柱(美国Vector Laboratories);Sephacryl S-200 HR分子筛(英国Amersham Biosciences);BCA蛋白定量试剂盒、HiFiScript cDNA第一链合成试剂盒(南京诺唯赞);SYBR Green PCR Master Mix(厦门生命互联);Trizon Reagent、Ultrapure RNA超纯RNA提取试剂盒(江苏康为世纪)。
2. IgAN患者血清IgA1提取: 收集经肾脏病理证实为原发性IgAN患者的血清。采用Jacalin-Agarose亲和层析法提取Jacalin结合蛋白,将Jacalin结合蛋白通过Sephacryl S-200 HR分子筛柱分离得到IgA1,并将单体IgA1(mIgA1)热聚合为聚合IgA1(aIgA1)。
3. 细胞培养及分组: HMC培养于含10%胎牛血清的RPMI1640培养基,放入37℃、5%CO2的孵箱中常规培养。0.25%胰酶消化,1∶3传代,细胞生长至70%~80%融合时,用无血清培养基同步12 h后,将HMC分为3组:(1)空白对照组;(2)IgA1组(0.5 mg/ml aIgA1);(3)IgA1+PFD组(0.5 mg/ml aIgA1+2 mmol/L PFD)。参考文献[4]选择不同浓度梯度PFD作用于HMC 24 h,通过CCK8法检测细胞增殖情况确定PFD作用浓度,各组分别于24、48、72 h时间点收获细胞。
4. CCK8法测定细胞存活及增殖能力: 细胞消化、重悬,计数,铺板,细胞密度为6×103个/孔;待细胞贴壁后,加药处理24 h,将待测的96孔板细胞换成相同的培养基,每孔100 μl;每孔加入10 μl CCK8试剂,置于培养箱中孵育2 h;酶标仪在450 nm波长处检测每孔的吸光度(A)值。抑制率=[IgA1组A值-(IgA1+PFD组A值)]/IgA1组A值×100%。
5. 流式细胞术检测细胞周期: 将细胞悬液离心1 500 r/min(离心半径8 cm)3 min,弃上清。加入1 ml磷酸盐缓冲液,1 500 r/min(离心半径8 cm)离心3 min弃上清;加入1 ml DNA染色液和10 μl固定破膜液涡旋振荡5~10 s混匀,室温避光孵育30 min;上机检测,分析数据。系膜细胞增殖指数=S期和G2/M期细胞比例之和/(G1期、S期和G2/M期细胞比例之和)。
6. Western印迹检测相关蛋白表达: 收集各组细胞,加入裂解液,冰上放置15 min,12 000 r/min(离心半径8 cm)高速离心10 min,取上清液,加入缓冲溶液,煮沸5 min,-20℃保存。BCA法测定蛋白浓度。取20~40 μg总蛋白进行SDS聚丙烯酰胺凝胶电泳,电转移至聚偏氟乙烯(PVDF)膜上,TBST(Tris-HCl缓冲盐+Tween缓冲液)封闭液室温摇床上封闭1 h后,分别加入抗体GAPDH(1∶2 000)、Smad4(1∶1 000)、Smad7(1∶1 000)、TGF-β1(1∶1 000)、collagen Ⅳ(1∶1 000)、FN(1∶1 000),4℃过夜。采用TBST洗膜后加入辣根过氧化物酶标记的山羊抗小鼠或兔抗体(1∶2 000),室温孵育2 h;洗膜,用TBST浸泡10 min弃掉,重复3次。用发光液浸湿PVDF膜后放置于超高灵敏度化学发光成像系统[ChemiDoc XRS+,伯乐生命医学产品(上海)有限公司]样品放置区并运行程序显影成像。
7. 实时定量PCR检测相关mRNA表达: 收集细胞,Trizon试剂使样本充分裂解,提取RNA并进行浓度、纯度测定,将RNA通过反转录合成cDNA,以cDNA为模板,在荧光定量PCR仪上进行检测,制作标准曲线和溶解曲线,以β-actin为内参,使用2-ΔΔCt方法计算各组细胞中目的基因的相对表达水平。各引物序列见表1
表1 目标基因引物序列及其大小
引物名称 引物序列 产物长度
(bp)
Smad4 正向AGCTACTTACCATCATAACAGCACT 159
Smad4 反向AATGCAAGCTCATTGTGAACAGG
Smad7 正向AGCTCAATTCGGACAACAAGA 101
Smad7 反向GTACACCCACACACCATCCAC
TGF-β1 正向CCGACTACTACGCCAAGGA 322
TGF-β1 反向AACCACTGCCGCACAACTC
FN 正向ATGAAGAACCCTTACAGTTCAGG 146
FN 反向CACGGTAACAACCTCTTCCC
Collagen Ⅳ 正向GACCATTTATTAGTAGGTGTGCTG 127
Collagen Ⅳ 反向ACAAAAGAGTAGCCGATCCACA
β-actin 正向TGGCACCCAGCACAATGAA 186
β-actin 反向CTAAGTCATAGTCCGCCTAGAAGCA
8. 数据处理和统计学分析: 应用SPSS 20.0软件对数据进行统计分析。所有实验重复3次,定量结果采用x¯±s形式表示,两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,两两比较采用SNK法。检验水准α=0.05,P<0.05视为差异有统计学意义。

结果

1. PFD对aIgA1诱导HMC增殖的影响: 通过CCK8法观察不同浓度PFD对HMC增殖的影响,0.625、1、2、4、8 mmol/L PFD组HMC细胞活力均明显下降(均P<0.05),且呈剂量依赖性,见图1。最终以2 mmol/L为后续实验作用浓度。与HMC空白对照组相比,aIgA1诱导24 h和48 h的HMC细胞活力显著增加(均P<0.05),aIgA1诱导72 h的 HMC细胞活力略低但差异无统计学意义(P>0.05),提示随着时间延长,aIgA1诱导HMC增殖的作用逐渐减弱;PFD处理24、48、72 h后,与IgA1组相比,HMC增殖均显著被抑制(均P<0.01),见图2。PFD作用24、48、72 h对HMC增殖的抑制率分别为18.5%、22.1%、24.5%,各组间差异无统计学意义(P>0.05)。鉴于PFD的抑制作用与作用时间无明显相关性,选择HMC存活率更高的24 h时间点作为后续实验作用时间。
图1 不同浓度吡非尼酮(PFD)对人肾小球系膜细胞增殖的影响(CCK8法)
注:与对照组(0 mmol/L PFD)比较,aP<0.05;n=3

Full size|PPT slide

图2 吡非尼酮(PFD)对aIgAl诱导人肾小球系膜细胞增殖的影响(CCK8法)
注:与空白对照组比较,aP<0.05;与IgA1组比较,bP<0.05;n=3

Full size|PPT slide

2. PFD对aIgA1刺激下HMC细胞周期变化的影响:与空白对照组相比,IgA1组HMC中G1期细胞明显减少,S期细胞明显增多,细胞增殖指数增加(均P<0.05);与IgA1组相比,IgA1+PFD组HMC中G1期细胞明显增多,S期及G2/M期细胞明显减少,细胞增殖指数下降(均P<0.05),见表2。提示PFD可抑制aIgA1诱导HMC由G1期向G2/S期的转化,从而发挥抑制HMC增殖的作用。
表2 各组G1期、S期、G2/M期占比及人肾小球系膜细胞增殖指数比较(x¯±sn=3)
组别 G1期(%) S期(%) G2/M期(%) 细胞增殖指数
空白对照组 52.53±0.75 27.82±0.48 19.61±1.01 47.44±0.75
IgA1组 45.91±2.46a 33.81±2.08a 20.27±0.48 54.09±2.46a
IgA1+PFD组 55.84±0.67b 28.77±0.72b 15.34±0.99b 44.14±0.67b
注:PFD:吡非尼酮;与空白对照组比较,aP<0.05;与IgA1组比较,bP<0.05
3. PFD对aIgA1刺激HMC产生collagen Ⅳ、FN的影响: 与空白对照组相比,aIgA1刺激下HMC中collagen Ⅳ、FN的蛋白及mRNA表达均明显增加(均P<0.05);PFD处理后,与IgA1组相比,HMC中collagen Ⅳ、FN的蛋白及mRNA表达均明显下降(均P<0.05),见图3。提示PFD可抑制aIgA1刺激HMC产生collagen Ⅳ和FN。
图3 吡非尼酮(PFD)对aIgAl诱导人肾小球系膜细胞产生collagen Ⅳ、FN的影响
注:A:各组Ⅳ型胶原蛋白(collagen Ⅳ)、纤维连接蛋白(FN)表达变化(Western印迹);B:各组collagen Ⅳ、FN mRNA表达变化(实时定量PCR);与空白对照组比较,aP<0.05;与IgA1组比较,bP<0.05;n=3

Full size|PPT slide

4. PFD对TGF-β1/Smad通路的影响: Western印迹结果显示,与空白对照组相比,aIgA1刺激后HMC中TGF-β1、Smad4蛋白表达明显增加,Smad7蛋白表达明显下降(均P<0.05);PFD处理后HMC中TGF-β1、Smad4蛋白表达明显下降,Smad7蛋白表达增加,差异均有统计学意义(均P<0.05),见图4A。实时定量PCR结果显示,与空白对照组相比,IgA1组Smad4 mRNA表达水平明显上升,PFD处理后Smad4 mRNA表达水平显著下降,差异均有统计学意义(均P<0.05)。各组TGF-β1和Smad7 mRNA表达差异均无统计学意义(均P>0.05),见图4B
图4 吡非尼酮(PFD)对TGF-β1/Smad通路的影响
注:A:各组Smad4、Smad7、TGF-β1蛋白表达变化(Western印迹);B:各组Smad4、Smad7、TGF-β1 mRNA表达变化(实时定量PCR);与空白对照组比较,aP<0.05;与IgA1组比较,bP<0.05;n=3

Full size|PPT slide

讨论

IgAN的特征性表现是以IgA或IgA为主的免疫复合物在肾小球系膜区沉积,同时伴有系膜细胞增生、基质增多和系膜区电子致密物沉积[5]。从IgAN患者血清分离的含糖基化缺陷IgAl免疫复合物可与肾脏系膜细胞结合,激活系膜细胞,促使局部产生TGF-β1、白细胞介素6、肿瘤坏死因子α等细胞因子,诱导系膜细胞增殖,促进细胞外基质成分分泌增多,诱导肾小球损伤,继而影响足细胞、小管细胞及相关因子的表达,介导足细胞、肾小管的损伤[6]。由此可见,系膜细胞增殖是IgAN肾损伤的源头。
系膜细胞的活化及增殖受多种细胞因子及信号通路的调控,其中TGF-β1是肾脏组织中的主要细胞因子,在IgAN肾损害中起着重要作用。我们的前期研究证实,IgAN患者血清aIgA1可诱导HMC产生TGF-β1,从而促进HMC增殖[7]。PFD是一种可以抑制TGF-β1产生的小分子药物,目前临床主要应用于抗纤维化治疗。PFD对肾脏疾病的临床研究较少。一项小样本开放性临床试验评价PFD在局灶节段性肾小球硬化症的有效性和安全性,结果显示PFD不仅可明显改善肾小球滤过率,而且安全性相对较高,可用于慢性进展性肾脏疾病的治疗[8]。另一项随机双盲对照临床试验也显示,PFD延缓了糖尿病肾病患者估算肾小球滤过率的下降[9]。Matsumoto等[10]在PFD治疗肺纤维化的临床研究中,观察到PFD可同时改善患者的肾功能。近期在脓毒血症急性肾损伤(sAKI)中的临床试验却显示PFD并没有改善sAKI的临床进程,但在不良事件方面是安全的[11]。越来越多研究证实PFD可有效改善肾纤维化,保护肾功能[12-13],但对肾小球损伤的作用尚不明确。谢菲菲等[14]通过动物模型和体外实验初步证实,PFD可降低糖尿病肾病小鼠模型的24 h尿白蛋白量和改善肾纤维化,其机制可能与抑制小鼠肾小球系膜细胞活化及增殖、下调TGF-β1及促炎性因子表达、减少胶原合成有关。
在本研究中,我们采用亲和层析联合分子筛柱的方法提取IgAN患者的IgA1,通过体外实验观察PFD对aIgA1诱导HMC增殖的作用。CCK8检测结果显示,IgAN患者血清aIgA1可诱导HMC增殖,而PFD可显著抑制aIgA1对HMC的促增殖作用,PFD的抑制作用与作用浓度呈正相关,而与作用时间无关。在对成纤维细胞及各种肿瘤细胞的研究中发现,PFD可以通过调控细胞周期抑制各类细胞的增殖[15-17]。我们采用流式细胞术对细胞周期检测同样发现,aIgA1可以促进HMC由G1期向G2/S期转化,从而促进细胞增殖,而PFD则通过增加细胞在G1期的阻滞,抑制HMC增殖。本研究观察到aIgA1刺激可促进HMC中collagen Ⅳ、FN蛋白及mRNA表达等,PFD处理后,aIgA1诱导的细胞外基质collagen Ⅳ、FN蛋白及mRNA表达均明显下降。说明PFD可抑制aIgA1诱导HMC分泌合成异常增多的细胞外基质。
TGF-β1是具有多种生物学活性的多肽类细胞因子,在细胞的增殖、分化、凋亡、自噬及细胞外基质的产生等过程中起重要的调节作用[18]。TGF-β1/Smad信号通路是TGF-β1下游经典通路。Smads是细胞内重要的TGF-β1信号转导和调节分子,根据其功能和特征的不同分为3类:受体调节型(R-Smads),包括Smad1、Smad2、Smad3、Smad5、Smad8,其中Smad2和Smad3是TGF-β/Activin的细胞内信号转导分子;共同通路型(Co-Smads),主要是Smad4,其功能是与磷酸化的R-Smads形成Smads复合物并共同转运至细胞核,在其他转录因子共同作用下特异性调控靶基因的转录;抑制型(I-Smads),包括Smad6和Smad7,可与激活的Ⅰ型受体结合,从而竞争性抑制R-Smads的磷酸化,导致信号通路被阻断,其中Smad7对TGF-β1、肌动蛋白(Actin)和骨形成蛋白(BMP)信号转导均有抑制作用[19]。TGF-β1/Smad通路在肾间质纤维化中作用的研究最为广泛,其中Smad2和Smad3的相关研究最多。Smad在IgAN中的研究不多,且各亚型作用不太一致。有研究发现Smad参与调节肠道相关淋巴组织IgA的产生[20]。在特异性敲除B淋巴细胞上Smad2基因表达的小鼠中,B细胞产生增多,但IgA类型转换减少;Smad7表达缺失的B细胞在TGF-β1刺激下可上调Smad2的磷酸化,从而使IgA分泌增多[21]。在脾B淋巴细胞上过表达Smad3和Smad4可促进IgA的产生[22]
为进一步探讨PFD抑制aIgA1诱导HMC增殖可能的作用机制,本研究对共同通路型Smad4和抑制型Smad7进行了观察。Western印迹结果显示,aIgA1刺激HMC中TGF-β1、Smad4蛋白表达明显增加,Smad7蛋白表达明显下降。PFD处理可下调HMC中TGF-β1、Smad4蛋白表达,上调Smad7蛋白表达。实时定量PCR结果显示,aIgA1刺激后Smad4 mRNA表达与蛋白水平一样明显上升,PFD处理后Smad4 mRNA表达水平亦显著下降。但TGF-β1、Smad7 mRNA表达水平在干预前后均无显著差异。这种蛋白与mRNA表达的差异可能与转录后翻译水平的差别有关。由此可见,PFD可能通过抑制TGF-β1/Smad4通路,上调Smad7表达,对aIgA1诱导的HMC增殖起调控作用。
综上所述,本研究通过体外实验初步证实,PFD可增加HMC在G1期的阻滞,抑制IgAN患者aIgA1诱导的HMC增殖,减少细胞外基质的产生,从而改善IgAN肾脏损害的发生发展。其机制可能与上调Smad7表达及下调TGF-β1/Smad4通路有关。下一步仍需通过动物体内实验及临床试验明确PFD对IgAN的治疗作用及安全性,并深入探讨其可能的机制,为未来IgAN治疗提供新的选择。

参考文献

[1]
Wang W, Chen N. Treatment of progressive IgA nephropathy: an update[J]. Contrib Nephrol, 2013, 181: 75-83. DOI: 10.1159/000348460.
IgA nephropathy (IgAN) is the most common primary glomerular disease worldwide. About 25-30% of IgAN patients will progress to end-stage kidney disease in 20-25 years. Early-onset symptoms that are highly suggestive of progressive IgAN include massive proteinuria, hypertension, renal damage, glomerular sclerosis, crescent formation, and tubulointerstitial fibrosis. Progressive IgAN may progress to renal failure in a short time. Optimized supportive therapy is the fundamental treatment for progressive IgAN patients, and includes renin-angiotensin system blockers, blood pressure control, antiplatelet and anticoagulant drugs, statins, and allopurinol. In progressive IgAN patients whose clinical and pathological manifestations are more severe, active therapy may be considered including glucocorticoid therapy, cyclophosphamide, azathioprine, mycophenolate mofetil, tacrolimus, and other immunosuppressants. However, there are currently controversies on the definition and treatment of progressive IgAN.Copyright © 2013 S. Karger AG, Basel.
[2]
Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy[J]. Pediatr Nephrol, 2018, 33(5): 763-777. DOI: 10.1007/s00467-017-3699-z.
IgA nephropathy is the most common form of glomerulonephritis in many parts of the world and remains an important cause of end-stage renal disease. Current evidence suggests that IgA nephropathy is not due to a single pathogenic insult, but rather the result of multiple sequential pathogenic "hits". An abnormally increased level of circulating poorly O-galactosylated IgA1 and the production of O-glycan-specific antibodies leads to the formation of IgA1-containing immune complexes, and their subsequent mesangial deposition results in inflammation and glomerular injury. While this general framework has formed the foundation of our current understanding of the pathogenesis of IgA nephropathy, much work is ongoing to try to precisely define the genetic, epigenetic, immunological, and molecular basis of IgA nephropathy. In particular, the precise origin of poorly O-galactosylated IgA1 and the inciting factors for the production of O-glycan-specific antibodies continue to be intensely evaluated. The mechanisms responsible for mesangial IgA1 deposition and subsequent renal injury also remain incompletely understood. In this review, we summarize the current understanding of the key steps involved in the pathogenesis of IgA nephropathy. It is hoped that further advances in our understanding of this common glomerulonephritis will lead to novel diagnostic and prognostic biomarkers, and targeted therapies to ameliorate disease progression.
[3]
Xiao J, Wang M, Xiong D, et al. TGF-β1 mimics the effect of IL-4 on the glycosylation of IgA1 by downregulating core 1 β1, 3-galactosyltransferase and Cosmc[J]. Mol Med Rep, 2017, 15(2): 969-974. DOI: 10.3892/mmr.2016.6084.
The aberrant glycosylation of IgA1 is pivotal in the pathogenesis of IgA nephropathy (IgAN). The aim of the present study was to investigate the effect of transforming growth factor‑β1 (TGF‑β1) on the glycosylation of IgA1 and the associated mechanism. The mRNA levels of core1 β1, 3-galactosyltransferase (C1GalT1) and its molecular chaperone, Cosmc, were analyzed, as was the subsequent O-glycosylation of IgA1, in a human B‑cell line stimulated with TGF‑β1. The IgA1‑positive human B‑cell line was cultured with different concentrations of recombinant human TGF‑β1 (5, 10, 15 and 30 ng/ml). The production and glycosylation of IgA1 were assayed using sandwich ELISA and enzyme‑linked lectin binding assays, respectively, and the mRNA levels of C1GalT1 and Cosmc were quantified using reverse transcription‑quantitative polymerase chain reaction analysis. The results showed that the production of IgA1 was stimulated by low concentrations of TGF‑β1 (5 or 10 ng/ml) and was suppressed by high concentrations (15 or 30 ng/ml). The terminal glycosylation of secreted IgA1 was altered in response to TGF‑β1. TGF‑β1 stimulation significantly decreased the mRNA levels of C1GalT1 and Cosmc. TGF‑β1 may be key in controlling the glycosylation of IgA1, in part via the downregulation of C1GalT1 and Cosmc.
[4]
甘文华, 黄凯, 吕紫薇, 等. 吡非尼酮和尼达尼布体外抗肺纤维化作用[J]. 中国药理学通报, 2019, 35(10): 1370-1375. DOI: 10.3969/j.issn.1001-1978.2019.10.009.
[5]
Rodrigues JC, Haas M, Reich HN. IgA nephropathy[J]. Clin J Am Soc Nephrol, 2017, 12(4): 677-686. DOI: 10.2215/CJN.07420716.
IgA nephropathy (IgAN) is a leading cause of CKD and renal failure. Recent international collaborative efforts have led to important discoveries that have improved our understanding of some of the key steps involved in the immunopathogenesis of IgAN. Furthermore, establishment of multicenter networks has contributed to rigorous design and execution of clinical trials that have provided important insights regarding immunotherapy in IgAN. In this article, we review emerging developments in clinical and translational IgAN research and describe how these novel findings will influence future strategies to improve the outcome of patients with IgAN.
[6]
Yeo SC, Cheung CK, Barratt J. New insights into the pathogenesis of IgA nephropathy[J]. Pediatr Nephrol, 2018, 33(5): 763-777. DOI: 10.1007/s00467-017-3699-z.
IgA nephropathy is the most common form of glomerulonephritis in many parts of the world and remains an important cause of end-stage renal disease. Current evidence suggests that IgA nephropathy is not due to a single pathogenic insult, but rather the result of multiple sequential pathogenic "hits". An abnormally increased level of circulating poorly O-galactosylated IgA1 and the production of O-glycan-specific antibodies leads to the formation of IgA1-containing immune complexes, and their subsequent mesangial deposition results in inflammation and glomerular injury. While this general framework has formed the foundation of our current understanding of the pathogenesis of IgA nephropathy, much work is ongoing to try to precisely define the genetic, epigenetic, immunological, and molecular basis of IgA nephropathy. In particular, the precise origin of poorly O-galactosylated IgA1 and the inciting factors for the production of O-glycan-specific antibodies continue to be intensely evaluated. The mechanisms responsible for mesangial IgA1 deposition and subsequent renal injury also remain incompletely understood. In this review, we summarize the current understanding of the key steps involved in the pathogenesis of IgA nephropathy. It is hoped that further advances in our understanding of this common glomerulonephritis will lead to novel diagnostic and prognostic biomarkers, and targeted therapies to ameliorate disease progression.
[7]
黄佳晏, 杨柳, 江磊, 等. 细胞因子信号转导抑制因子3过表达对IgA肾病患者IgA1刺激人肾小球系膜细胞增殖的抑制作用[J]. 中华肾脏病杂志, 2017, 33(8): 616-622. DOI: 10.3760/cma.j.issn.1001-7097.2017.08.009.
[8]
Cho ME, Smith DC, Branton MH, et al. Pirfenidone slows renal function decline in patients with focal segmental glomerulosclerosis[J]. Clin J Am Soc Nephrol, 2007, 2(5): 906-913. DOI: 10.2215/CJN.01050207.
[9]
Sharma K, Ix JH, Mathew AV, et al. Pirfenidone for diabetic nephropathy[J]. J Am Soc Nephrol, 2011, 22(6): 1144-1151. DOI: 10.1681/ASN.2010101049.
Pirfenidone is an oral antifibrotic agent that benefits diabetic nephropathy in animal models, but whether it is effective for human diabetic nephropathy is unknown. We conducted a randomized, double-blind, placebo-controlled study in 77 subjects with diabetic nephropathy who had elevated albuminuria and reduced estimated GFR (eGFR) (20 to 75 ml/min per 1.73 m²). The prespecified primary outcome was a change in eGFR after 1 year of therapy. We randomly assigned 26 subjects to placebo, 26 to pirfenidone at 1200 mg/d, and 25 to pirfenidone at 2400 mg/d. Among the 52 subjects who completed the study, the mean eGFR increased in the pirfenidone 1200-mg/d group (+3.3 ± 8.5 ml/min per 1.73 m²) whereas the mean eGFR decreased in the placebo group (-2.2 ± 4.8 ml/min per 1.73 m²; P = 0.026 versus pirfenidone at 1200 mg/d). The dropout rate was high (11 of 25) in the pirfenidone 2400-mg/d group, and the change in eGFR was not significantly different from placebo (-1.9 ± 6.7 ml/min per 1.73 m²). Of the 77 subjects, 4 initiated hemodialysis in the placebo group, 1 in the pirfenidone 2400-mg/d group, and none in the pirfenidone 1200-mg/d group during the study (P = 0.25). Baseline levels of plasma biomarkers of inflammation and fibrosis significantly correlated with baseline eGFR but did not predict response to therapy. In conclusion, these results suggest that pirfenidone is a promising agent for individuals with overt diabetic nephropathy.
[10]
Matsumoto J, Sunohara K, Mori Y, et al. Effects of pirfenidone on renal function in patients with interstitial pneumonia[J]. Ren Fail, 2021, 43(1): 879-881. DOI: 10.1080/0886022X.2021.1925297.
[11]
Chávez-Iñiguez JS, Poo JL, Ibarra-Estrada M, et al. Effect of prolonged-release pirfenidone on renal function in septic acute kidney injury patients: a double-blind placebo-controlled clinical trial[J]. Int J Nephrol, 2021, 2021: 8833278. DOI: 10.1155/2021/8833278.
[12]
Isaka Y. Targeting TGF-β signaling in kidney fibrosis[J]. Int J Mol Sci, 2018, 19(9): 2532. DOI: 10.3390/ijms19092532.
Renal fibrosis is the final common pathway of numerous progressive kidney diseases, and transforming growth factor-β (TGF-β) has an important role in tissue fibrosis by up-regulating matrix protein synthesis, inhibiting matrix degradation, and altering cell-cell interaction. Many strategies targeting TGF-β, including inhibition of production, activation, binding to the receptor, and intracellular signaling, have been developed. Some of them were examined in clinical studies against kidney fibrosis, and some are applied to other fibrotic diseases or cancer. Here, I review the approaches targeting TGF-β signaling in kidney fibrosis.
[13]
Bai X, Nie P, Lou Y, et al. Pirfenidone is a renal protective drug: mechanisms, signalling pathways, and preclinical evidence[J]. Eur J Pharmacol, 2021, 911: 174503. DOI: 10.1016/j.ejphar.2021.174503.
[14]
谢菲菲, 陆苗苗, 府晓, 等. 吡非尼酮在治疗糖尿病肾病小鼠肾纤维化中的作用及机制[J]. 中华肾脏病杂志, 2018, 34(9): 689-696. DOI: 10.3760/cma.j.issn.1001-7097.2018.09.008.
[15]
Usugi E, Ishii K, Hirokawa Y, et al. Antifibrotic agent pirfenidone suppresses proliferation of human pancreatic cancer cells by inducing G0/G1 cell cycle arrest[J]. Pharmacology, 2019, 103(5-6): 250-256. DOI: 10.1159/000496831.
Pirfenidone (PFD), which is an antifibrotic agent used for treatment of idiopathic pulmonary fibrosis, induces G0/G1 cell cycle arrest in fibroblasts. We hypothesized that PFD-induced G0/G1 cell cycle arrest might be achieved in other types of cells, including cancer cells. Here we investigated the effects of PFD on the proliferation of pancreatic cancer cells (PCCs) in vitro.Human skin fibroblasts ASF-4-1 cells and human prostate stromal cells (PrSC) were used as fibroblasts. PANC-1, MIA PaCa-2, and BxPC-3 cells were used as human PCCs. Cell cycle and apoptosis were analyzed using flow cytometer.First, we confirmed that PFD suppressed cell proliferation of ASF-4-1 cells and PrSC and induced G0/G1 cell cycle arrest. Under these experimental conditions, PFD also suppressed cell proliferation and induced G0/G1 cell cycle arrest in all PCCs. In PFD-treated PCCs, expression of p21 was increased but that of CDK2 was not clearly decreased. Of note, PFD did not induce significant apoptosis among PCCs.These results demonstrated that the antifibrotic agent PFD might have antiproliferative effects on PCCs by inducing G0/G1 cell cycle arrest. This suggests that PFD may target not only fibroblasts but also PCCs in the tumor microenvironment of pancreatic cancer.© 2019 S. Karger AG, Basel.
[16]
Tao Y, Chen Q, Zhao C, et al. The in vitro anti-fibrotic effect of pirfenidone on human pterygium fibroblasts is associated with down-regulation of autocrine TGF-β and MMP-1[J]. Int J Med Sci, 2020, 17(6): 734-744. DOI: 10.7150/ijms.43238.
[17]
Ishii K, Sasaki T, Iguchi K, et al. Pirfenidone, an anti-fibrotic drug, suppresses the growth of human prostate cancer cells by inducing G1 cell cycle arrest[J]. J Clin Med, 2019, 8(1): 44. DOI: 10.3390/jcm8010044.
Pirfenidone (PFD) is an anti-fibrotic drug used to treat idiopathic pulmonary fibrosis by inducing G1 cell cycle arrest in fibroblasts. We hypothesize that PFD can induce G1 cell cycle arrest in different types of cells, including cancer cells. To investigate the effects of PFD treatment on the growth of human prostate cancer (PCa) cells, we used an androgen-sensitive human PCa cell line (LNCaP) and its sublines (androgen-low-sensitive E9 and F10 cells and androgen-insensitive AIDL cells), as well as an androgen-insensitive human PCa cell line (PC-3). PFD treatment suppressed the growth of all PCa cells. Transforming growth factor β1 secretion was significantly increased in PFD-treated PCa cells. In both LNCaP and PC-3 cells, PFD treatment increased the population of cells in the G0/G1 phase, which was accompanied by a decrease in the S/G2 cell population. CDK2 protein expression was clearly decreased in PFD-treated LNCaP and PC-3 cells, whereas p21 protein expression was increased in only PFD-treated LNCaP cells. In conclusion, PFD may serve as a novel therapeutic drug that induces G1 cell cycle arrest in human PCa cells independently of androgen sensitivity. Thus, in the tumor microenvironment, PFD might target not only fibroblasts, but also heterogeneous PCa cells of varying androgen-sensitivity levels.
[18]
Tzavlaki K, Moustakas A. TGF-β signaling[J]. Biomolecules, 2020, 10(3): 487. DOI: 10.3390/biom10030487.
Transforming growth factor-β (TGF-β) represents an evolutionarily conserved family of secreted polypeptide factors that regulate many aspects of physiological embryogenesis and adult tissue homeostasis. The TGF-β family members are also involved in pathophysiological mechanisms that underlie many diseases. Although the family comprises many factors, which exhibit cell type-specific and developmental stage-dependent biological actions, they all signal via conserved signaling pathways. The signaling mechanisms of the TGF-β family are controlled at the extracellular level, where ligand secretion, deposition to the extracellular matrix and activation prior to signaling play important roles. At the plasma membrane level, TGF-βs associate with receptor kinases that mediate phosphorylation-dependent signaling to downstream mediators, mainly the SMAD proteins, and mediate oligomerization-dependent signaling to ubiquitin ligases and intracellular protein kinases. The interplay between SMADs and other signaling proteins mediate regulatory signals that control expression of target genes, RNA processing at multiple levels, mRNA translation and nuclear or cytoplasmic protein regulation. This article emphasizes signaling mechanisms and the importance of biochemical control in executing biological functions by the prototype member of the family, TGF-β.
[19]
Ma TT, Meng XM. TGF-β/Smad and renal fibrosis[J]. Adv Exp Med Biol, 2019, 1165: 347-364. DOI: 10.1007/978-981-13-8871-2_16.
[20]
Malhotra N, Kang J. SMAD regulatory networks construct a balanced immune system[J]. Immunology, 2013, 139(1): 1-10.
A balanced immune response requires combating infectious assaults while striving to maintain quiescence towards the self. One of the central players in this process is the pleiotropic cytokine transforming growth factor-β (TGF-β), whose deficiency results in spontaneous systemic autoimmunity in mice. The dominant function of TGF-β is to regulate the peripheral immune homeostasis, particularly in the microbe-rich and antigen-rich environment of the gut. To maintain intestinal integrity, the epithelial cells, myeloid cells and lymphocytes that inhabit the gut secrete TGF-β, which acts in both paracrine and autocrine fashions to activate its signal transducers, the SMAD transcription factors. The SMAD pathway regulates the production of IgA by B cells, maintains the protective mucosal barrier and promotes the balanced differentiation of CD4(+) T cells into inflammatory T helper type 17 cells and suppressive FOXP3(+) T regulatory cells. While encounters with pathogenic microbes activate SMAD proteins to evoke a protective inflammatory immune response, SMAD activation and synergism with immunoregulatory factors such as the vitamin A metabolite retinoic acid enforce immunosuppression toward commensal microbes and innocuous food antigens. Such complementary context-dependent functions of TGF-β are achieved by the co-operation of SMAD proteins with distinct dominant transcription activators and accessory chromatin modifiers. This review highlights recent advances in unravelling the molecular basis for the multi-faceted functions of TGF-β in the gut that are dictacted by fluid orchestrations of SMADs and their myriad partners.© 2013 Blackwell Publishing Ltd.
[21]
Klein J, Ju W, Heyer J, et al. B cell-specific deficiency for Smad2 in vivo leads to defects in TGF-beta-directed IgA switching and changes in B cell fate[J]. J Immunol, 2006, 176(4): 2389-2396. DOI: 10.4049/jimmunol.176.4.2389.
Smad2 is a member of the intracellular mediators that transduce signals from TGF-beta receptors and activin receptors. Targeted inactivation of Smad2 in mice leads to early lethality before gastrulation. It was shown previously that TGF-betaRII deficiency in vivo leads to defects in B cell homeostasis, Ag responsiveness, and IgA class switch recombination of B cells. To investigate the importance of Smad2-mediated signaling in B lymphocytes, we generated a B cell-specific inactivation of Smad2 in mice (bSmad2(-/-)). bSmad2(-/-) mice had normal B cell numbers in the spleen but showed a reduced population of marginal zone B cells. In contrast, B cells in Peyer's patches and peritoneal B-1a cells of bSmad2(-/-) mice were increased in numbers. bSmad2(-/-) mice showed a reduced number of surface-IgA(+) B cells and of IgA-secreting cells in Peyer's patches, decreased levels of IgA in serum, and, after immunization with a T cell-dependent Ag, a reduced IgA response. Class switch recombination to IgA was impaired in Smad2-deficient B cells, when stimulated in vitro with LPS in the presence of TGF-beta. The growth-inhibitory effects of TGF-beta in LPS-stimulated B cells were not affected in Smad2-deficient B cells. In summary, our data indicate a crucial role of Smad2 in mediating signals for the TGF-beta-directed class switch to IgA and the induction of IgA responses in vivo. Other B cell functions like growth-inhibitory signaling, which are known to be regulated by signals via the TGF-betaR, are not affected in Smad2-deficient B cells.
[22]
Park SR, Lee JH, Kim PH. Smad3 and Smad4 mediate transforming growth factor β1-induced IgA expression in murine B lymphocytes[J]. Eur J Immunol, 2001, 31(6): 1706-1715. DOI: 10.1002/1521-4141(200106)31:6<1706::aid-immu 1706>3.0.co;2-z.

利益冲突

所有作者声明无利益冲突

基金

江西省科技厅重点研发计划(20181BBG70016)
PDF(1074 KB)

1366

Accesses

0

Citation

Detail

段落导航
相关文章

/