慢性肾衰竭幼鼠胫骨生长板软骨细胞线粒体自噬增强对软骨细胞凋亡的影响

王小健, 徐威威, 李荣山, 李爱中, 路晓, 马月红, 田伟, 张宇明, 常峰, 苏云星

PDF(7967 KB)
中华肾脏病杂志 ›› 2022, Vol. 38 ›› Issue (3) : 211-217. DOI: 10.3760/cma.j.cn441217-20210121-00030
基础研究

慢性肾衰竭幼鼠胫骨生长板软骨细胞线粒体自噬增强对软骨细胞凋亡的影响

作者信息 +

Effect of increased mitophagy of chondrocytes in tibial growth plate of young rats with chronic renal failure on apoptosis

Author information +
History +

摘要

目的 探讨慢性肾衰竭(chronic renal failure,CRF)幼鼠胫骨生长板软骨细胞线粒体自噬水平及对细胞凋亡的影响。方法 雄性4周龄Sprague-Dawley(SD)幼鼠40只,按照随机数字表法分为正常对照组(蒸馏水灌胃)和CRF组(腺嘌呤150 mg·kg-1·d-1灌胃),连续灌胃6周后处死幼鼠,X线测量胫骨长度,组织学切片测量比较胫骨生长板宽度,应用原位末端转移酶标记技术(TUNEL)检测生长板软骨细胞凋亡率;体外培养正常对照组和CRF组幼鼠胫骨生长板软骨细胞至第3代,应用TUNEL技术检测软骨细胞凋亡率,应用荧光双染技术观测软骨细胞线粒体与自噬溶酶体共定位情况,应用Western印迹法检测线粒体标志蛋白线粒体外膜转位酶(translocase of the outer mitochondrial membrane-20,Tom-20)和自噬标志轻链蛋白-3(light chain-3,LC-3)表达情况,应用透射电镜观察软骨细胞线粒体自噬情况。结果 与正常对照组相比,CRF组幼鼠胫骨长度较短[(27.32±5.81)mm 比(35.43±3.61)mm,t=5.226,P<0.001],生长板相对宽度较窄(0.56±0.19比1.00±0.21,t=6.744,P<0.001),软骨细胞凋亡率较高(17.2%±4.8%比5.1%±3.4%,t=6.505,P<0.001)。CRF组体外培养生长板软骨细胞凋亡率高于正常对照组(11.8%±6.2%比3.1%±1.2%,t=4.357,P<0.001),荧光双染技术结果显示CRF组软骨细胞线粒体与自噬溶酶体出现明显的共定位现象,CRF组软骨细胞LC-3蛋白(t=8.944,P<0.001)及Tom-20蛋白(t=6.708,P<0.001)表达均少于正常对照组,电镜结果显示CRF组软骨细胞内出现较多的自噬囊泡吞噬线粒体并降解的现象。结论 CRF幼鼠胫骨生长板软骨细胞线粒体自噬水平出现增高现象,导致线粒体减少,引起软骨细胞凋亡、数量减少,最终导致胫骨发育不良。

Abstract

Objective To explore the level of tibial growth plate chondrocyte mitophagy in young rats with chronic renal failure (CRF) and its effect on chondrocyte apoptosis. Methods Male 4-week-old Sprague-Dawley rats were randomly divided into two groups according to random number table method: normal control group (n=20, intragastric administration with distilled water) and CRF group (n=20, given adenine suspension 150 mg·kg-1·d-1). All the young rats were sacrificed after continuous gavage for 6 weeks. The length of tibia was measured on X ray film, the width of tibia growth plate was measured and compared on histological section, and the apoptosis rate of chondrocytes in growth plate was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. The growth plate chondrocytes of two groups were isolated and cultured to the third generation in vitro, and the apoptosis rate of chondrocytes was detected by TUNEL assay. The co-localization of mitochondria and autophagy lysosomes in chondrocytes was observed by double fluorescence staining. Western blotting was used to detect the level of mitochondrial marker protein translocate of the outer mitochondrial membrane-20 (Tom-20) and autophagy marker light chain-3 protein (LC-3). The mitophagy of growth plate chondrocytes was observed by transmission electron microscope. Results Compared with the normal control group, the tibia length of CRF group was shorter [(27.32±5.81) mm vs (35.43±3.61) mm, t=5.226, P<0.001], and the relative width of growth plate in histological section was narrower (0.56±0.19 vs 1.00±0.21, t=6.744, P<0.001). The apoptosis rate of chondrocytes in growth plate in CRF group was higher than that in the normal control group (17.2%±4.8% vs 5.1%±3.4%, t=6.505, P<0.001). The apoptosis rate of chondrocytes cultured in vitro in CRF group was higher than that in the normal control group (11.8%±6.2% vs 3.1%±1.2%, t=4.357, P<0.001). The result of double influorescence staining showed that there was co-localization between mitochondria and autophagy lysosomes in CRF group. Western blotting results showed that the levels of LC-3 protein (t=8.944, P<0.001) and Tom-20 protein (t=6.708, P<0.001) in CRF group were lower than those in the normal control group. Conclusion The level of tibial growth plate chondrocyte mitophagy in young rats with CRF increases, which will lead to a decrease in the number of mitochondria, an increase in the apoptosis and a decrease in the number of chondrocytes, and eventually lead to dysplasia of tibia.

关键词

肾功能不全,慢性 / 线粒体 / 自噬 / 生长板

Key words

Renal insufficiency, chronic / Mitochondria / Autophagy / Growth plate

编辑

杨克魁

引用本文

导出引用
王小健 , 徐威威 , 李荣山 , 李爱中 , 路晓 , 马月红 , 田伟 , 张宇明 , 常峰 , 苏云星. 慢性肾衰竭幼鼠胫骨生长板软骨细胞线粒体自噬增强对软骨细胞凋亡的影响[J]. 中华肾脏病杂志, 2022, 38(3): 211-217. DOI: 10.3760/cma.j.cn441217-20210121-00030.
Wang Xiaojian , Xu Weiwei , Li Rongshan , Li Aizhong , Lu Xiao , Ma Yuehong , Tian Wei , Zhang Yuming , Chang Feng , Su Yunxing. Effect of increased mitophagy of chondrocytes in tibial growth plate of young rats with chronic renal failure on apoptosis[J]. Chinese Journal of Nephrology, 2022, 38(3): 211-217. DOI: 10.3760/cma.j.cn441217-20210121-00030.
罹患慢性肾衰竭(chronic renal failure,CRF)的患儿身材矮小[1]。长骨发育是影响身高的主要方面,而长骨生长板的发育决定了长骨的最终长度[2]。生长板软骨细胞根据不同生理状态可以分为静止区、增殖区和肥大钙化区。正常情况下,软骨细胞由静止区进入增殖区后会大量分裂增殖,最终有较多软骨细胞分化为骨细胞。但当病理因素出现而导致生长板软骨细胞凋亡率增高时,软骨细胞只会有较少分化为骨细胞,而影响长骨长度。我们的前期研究发现,当幼鼠CRF发生时,胫骨生长板软骨细胞凋亡率明显增高[3]。线粒体是一种存在于大多数细胞中的细胞器,是细胞中制造能量的结构。研究表明线粒体功能失调会严重影响软骨细胞的生理状态,甚至导致其死亡[4-5]。细胞内受损线粒体主要通过线粒体自噬(mitophagy)过程降解,因此线粒体自噬成为维持细胞内线粒体数量的关键因素[6]。那么当幼鼠CRF发生时,胫骨生长板软骨细胞内线粒体自噬水平如何、是否与生长板软骨细胞出现的大量凋亡有关,我们通过实验探讨二者的关联,现报道如下。

材料与方法

一、 主要试剂、仪器及软件

番红固绿试剂盒、腺嘌呤粉剂(美国Sigma);原位末端转移酶标记技术(TUNEL)细胞凋亡检测试剂盒(DAB染色)、TUNEL细胞凋亡检测试剂盒(红色荧光染色)、二脒基苯基吲哚(DAPI)试剂盒、羊抗兔Western印迹二抗、DMEM-F12培养基、胰蛋白酶(武汉博士德);自噬溶酶体绿色荧光示踪试剂盒(L7526,美国Thermo);线粒体红色荧光示踪试剂盒(40741ES50,上海翌圣);兔抗鼠轻链蛋白-3(light chain-3,LC-3)抗体、兔抗鼠P62蛋白抗体、兔抗鼠线粒体外膜转位酶(translocase of the outer mitochondrial membrane-20,Tom-20)蛋白抗体、兔抗鼠Aggrecan(软骨细胞标志蛋白)蛋白抗体、兔抗鼠CollagenⅩ(软骨细胞退变标志)蛋白抗体、兔抗鼠β-actin蛋白抗体(美国Abcam);胎牛血清(杭州四季青);Ⅱ型胶原酶(美国Gibco);石蜡捞片机、石蜡切片机、恒温展片机、Leica DM2500显微镜、Leica DMi1倒置相差显微镜(德国Leica);CO2恒温培养箱(北京白洋医疗器械);Himac CF15R高速低温离心机(日本Hitachi);图像分析软件Image Pro Plus 6.0(美国Media Cybernetics);Western印迹电泳、转膜系统、凝胶图像分析系统(Chemi DocTM XRS)(美国Bio-Rad);Beckman-Coulte Lx全自动生化分析仪(美国Beckman-Coulte);Hitachi HT7800电子显微镜(日本Hitachi)。

二、 实验动物与分组

1. 实验动物与分组: 所用动物来自山西医科大学动物实验中心,实验的实施得到山西医科大学伦理委员会的批准[SXMUE(2019004)]。实验选用健康无特定病原体(SPF)级4周龄雄性Sprague-Dawley(SD)幼鼠40只,体重(98±3)g。将幼鼠按照随机数字表法分为正常组(n=20,蒸馏水灌胃)和CRF组(n=20,腺嘌呤150 mg·kg-1·d-1灌胃),连续灌胃6周后处死幼鼠。饲养幼鼠于SPF级环境箱笼,12 h/12 h白光/无光循环模拟正常24 h节律。
2. 实验室检查: 6周末处死幼鼠前,置两组幼鼠于代谢笼中,收集24 h尿液,溴甲酚氯仿法测定尿蛋白量。心腔取血检测血尿素氮、血肌酐、钙、磷及全段甲状旁腺素(iPTH)水平。
3. 胫骨长度及生长板宽度测量: 拍摄大鼠胫骨侧位X线片,测量其长度并比较;取幼鼠双侧胫骨近端组织,固定脱钙制作石蜡切片,番红固绿染色观测生长板相对宽度(CRF组生长板宽度/正常组生长板宽度)。
4. 生长板软骨细胞凋亡率检测: 在胫骨近端组织学切片上应用TUNEL法检测生长板软骨细胞凋亡率并比较。
5. 生长板软骨细胞的提取和培养: 6周末颈椎脱臼法每组处死5只幼鼠,75%乙醇浸泡20 min,洁净操作台取双下肢,无菌器械剔除肌肉软组织,换另一套无菌器械分离胫骨近端骨骺,刮取两边组织,无菌磷酸盐缓冲液(PBS)冲洗后使用无菌眼科剪刀将刮取组织剪碎,0.1%Ⅱ型胶原酶消化5 h,过滤后体外培养,待细胞贴壁率达到90%开始传代,传至第3代进行实验。
6. 体外培养生长板软骨细胞的凋亡率检测: 应用TUNEL红色荧光试剂盒检测软骨细胞凋亡率并比较;应用TUNEL DAB染色试剂盒检测软骨细胞凋亡程度,并以免疫组化评分法比较,具体方法如下:染色强度0分为阴性染色,1分为弱阳性染色,2分为中等阳性染色,3分为强阳性染色;阳性细胞比例为0记为0分,0<阳性细胞比例≤1%记为1分,1%<阳性细胞比例≤10%记为2分,10%<阳性细胞比例≤30%记为3分,30%<阳性细胞比例≤70%记为4分,70%<阳性细胞比例≤100%记为5分,总评分=细胞染色强度分+阳性细胞比例分[7]
7. 荧光双染技术观测软骨细胞内线粒体与自噬溶酶体共定位: 线粒体红色荧光示踪试剂盒(500 nmol/L)标记线粒体,自噬溶酶体绿色荧光示踪试剂盒(5 mg/ml)标记自噬溶酶体。
8. Western印迹法检测软骨细胞内自噬标志蛋白和线粒体标志蛋白表达水平: 分别检测软骨细胞内LC-3蛋白(ab192890,1∶2 000)、P62蛋白(ab91526,1 μg/ml)、Tom-20蛋白(ab186735,1∶5 000)、Aggrecan(ab36861,1 μg/ml)、CollagenⅩ(ab182563,1∶2 000)表达水平,并以β-actin蛋白(ab8227,1∶5 000)为内参做半定量分析。
9. 电镜观察软骨细胞内线粒体自噬情况:应用日本Hatachi HT7800透射电子显微镜观察软骨细胞内线粒体自噬情况。

三、 统计学分析

应用SPSS 20.0 软件进行数据的统计学分析。符合正态分布的计量资料以x¯±s形式表示,两组间比较使用t检验,P<0.05视为差异有统计学意义。
表1 两组幼鼠实验第6周末各指标比较(x¯±s
组别 血尿素氮(mmol/L) 血肌酐(μmol/L) 血钙(mmol/L) 血磷(mmol/L) iPTH(ng/L) 尿蛋白量(mg/24 h)
正常对照组(n=20) 7.6±1.8 30.2±11.6 2.68±0.65 2.98±1.12 134.2±16.9 47.2±9.8
慢性肾衰竭组(n=18) 17.3±6.2a 71.2±20.1a 2.71±0.76 3.02±0.94 128.3±17.1 149.6±32.4a
t 6.392 7.585 0.131 0.118 1.068 12.870
P <0.001 <0.001 0.896 0.906 0.293 <0.001
注:iPTH:全段甲状旁腺素;与正常对照组比较,aP<0.01

结果

1. 一般情况及血尿生化: 实验过程中,CRF组幼鼠死亡2只,实际完成实验的幼鼠数目在正常对照组为20只,在CRF组为18只。实验第6周末,CRF组幼鼠24 h尿蛋白量、血尿素氮及血肌酐显著高于正常对照组(均P<0.001),而两组幼鼠间血钙、血磷及血iPTH水平的差异无统计学意义(均P>0.05),见表 1
2. 胫骨长度及生长板宽度测量结果: 与正常对照组相比,CRF组幼鼠胫骨长度较短[(27.32±5.81)mm比(35.43±3.61)mm,t=5.226,P<0.001],组织学切片生长板相对宽度较窄(0.56±0.19比1.00±0.21,t=6.744,P<0.001),见图 1A图1B
图1 胫骨及生长板长度比较
注:A:10周龄大鼠胫骨长度比较;B:4周龄及10周龄大鼠胫骨生长板宽度比较(番红固绿染色 ×100,黑线示生长板宽度);C:10周龄大鼠胫骨生长板TUNEL染色结果(红色箭头示棕黄色颗粒为阳性结果,×200),图C参考自王小健等[3],获得准许使用

Full size|PPT slide

3. 生长板软骨细胞凋亡率检测结果: TUNEL结果显示,CRF组软骨细胞凋亡率显著高于正常对照组(17.2%±4.8%比5.1%±3.4%,t=6.505,P<0.001,n=10),见图 1C
4. 生长板软骨细胞体外培养凋亡率检测结果: 正常对照组软骨细胞呈类圆形,而CRF组软骨细胞呈梭形,细胞突触较长,这是软骨细胞退变的表现,见图2A。TUNEL结果显示,CRF组体外培养生长板软骨细胞凋亡率显著高于正常对照组[11.8%±6.2%比3.1%±1.2%,t=4.357,P<0.001],CRF组TUNEL免疫组化评分亦显著高于正常对照组[(7.4±2.1)分比(2.0±0.7)分,t=7.714,P<0.001],见图2B图2C
图2 两组大鼠生长板软骨细胞体外培养形态及凋亡情况
注:A:两组胫骨生长板软骨细胞体外培养形态对比(光镜 ×400);B:生长板软骨细胞体外培养TUNEL结果(红色荧光为阳性信号,示凋亡细胞 ×100);C:生长板软骨细胞体外培养TUNEL结果(红色箭头示细胞核内棕黄色颗粒为阳性信号,示凋亡细胞 ×200)

Full size|PPT slide

5. 软骨细胞内线粒体与自噬溶酶体共定位观测结果: CRF组软骨细胞自噬平均荧光强度显著低于正常对照组[(362±118)比(920±209),t=7.433,P<0.001],线粒体在软骨细胞内分布不均匀,呈现团块状;正常对照组软骨细胞自噬荧光信号与线粒体荧光信号无明显共定位,而CRF组共定位现象明显。见图3A
图3 胫骨生长板软骨细胞体外培养线粒体自噬情况
注:A:生长板软骨细胞线粒体与自噬溶酶体荧光双染结果(红色荧光为线粒体染色,绿色荧光为自噬溶酶体染色,白色箭头示二者共定位,×400);B:线粒体和自噬标志蛋白表达(Western印迹);C:电镜下观察生长板软骨细胞的超微结构(白色箭头示细胞核,黄色箭头示正常线粒体,红色箭头示自噬囊泡形成,棕色箭头示吞噬病态线粒体,绿色箭头示正在降解线粒体,黑色箭头示自噬囊泡的双层膜结构)

Full size|PPT slide

6. 软骨细胞内自噬标志蛋白和线粒体标志蛋白表达水平: Western印迹结果显示,与正常对照组相比,CRF组软骨细胞LC-3蛋白(0.1±0.0比0.5±0.1,t=8.944,P<0.001)、P62蛋白(0.3±0.1比0.8±0.2,t=5.000,P=0.001)、Tom-20蛋白(0.1±0.0比0.7±0.2,t=6.708,P<0.001)、Aggrecan蛋白(0.5±0.2比1.1±0.3,t=3.720,P=0.006)表达均较少,而CollagenⅩ蛋白表达较多(0.7±0.2比0.2±0.1,t=3.536,P=0.008),见图3B
7. 软骨细胞内线粒体自噬情况: 电镜结果显示,CRF组软骨细胞内出现较多自噬囊泡吞噬线粒体并降解的现象,见图3C

讨论

罹患CRF的儿童身材矮小,肢体长骨发育落后于正常人群[1,8]。长骨生长板区的发育决定了长骨的纵向延长,其按照软骨细胞形态可以分为静止区、增殖区和肥大钙化区。软骨细胞由静止区向肥大钙化区逐渐分化为骨细胞,以达到延长胫骨之目的[9]。Picton等[10]通过研究CRF患者长骨成骨细胞时发现,其具有促进细胞增殖作用的甲状旁腺素相关蛋白(parathyroid hormone-related peptide,PTHrp)受体mRNA表达明显降低,证明当CRF发生时成骨细胞的增殖能力明显减弱。王小健等[11]通过大鼠幼鼠CRF模型也证实,其胫骨生长板软骨细胞PTHrp受体蛋白表达明显降低,引起软骨细胞无法正常增殖,最终导致胫骨发育不良。同时,王小健等[3]也发现当大鼠幼鼠CRF发生时,生长板软骨细胞自噬能力下降,导致胞内糖原代谢障碍,引起软骨细胞供能不足而出现大量凋亡。病理因素会引起生长板区软骨细胞出现凋亡,就会导致较少数量的软骨细胞分化为骨细胞,最终造成胫骨发育不良。我们实验中也发现,当幼鼠发生CRF时,胫骨生长板软骨细胞出现了加速分化的倾向。
线粒体是细胞产生能量的细胞器,当线粒体受损,就会影响细胞的存活。受损的线粒体主要通过特异性的标志蛋白迁移并形成自噬体,后与溶酶体融合降解,此过程称为“线粒体自噬”[6,12-17]。Tom-20定位于线粒体上并稳定表达,但当线粒体自噬增多、线粒体数量变少时该蛋白表达就会降低。Maneiro等[18]证明当膝骨关节炎发生时,关节软骨细胞内线粒体出现异常、膜电位改变,ATP生产能力下降,最终导致软骨细胞凋亡。Kim等[19]发现骨关节炎关节软骨细胞内受损线粒体数量明显增加,能量供应不足可能最终引起软骨细胞的凋亡。关节软骨细胞是永久性软骨细胞,而生长板软骨细胞是暂时性软骨细胞,所以我们推测当大鼠幼鼠发生CRF时,胫骨生长板软骨细胞内线粒体的生理状态也发生了改变。
我们通过研究发现,使用腺嘌呤连续灌胃可以诱导幼鼠发生CRF(24 h尿蛋白量增高及血尿素氮、血肌酐增高),经过6周,CRF幼鼠胫骨变短、生长板变窄。我们通过在体内与体外对生长板软骨细胞进行TUNEL染色发现,CRF组软骨细胞凋亡率明显较高,这就说明当CRF发生时,胫骨生长板软骨细胞出现较多的凋亡。我们前期研究已经证实,当CRF发生时,生长板软骨细胞的自噬水平是明显降低的,当在体外通过培养生长板软骨细胞、进行自噬溶酶体绿色荧光染色后发现,CRF组软骨细胞平均荧光强度显著低于正常对照组,这与前期结论相符;裂解细胞后检测细胞自噬标志蛋白LC-3后结果也显示,CRF组软骨细胞自噬水平下降。软骨细胞线粒体荧光染色后发现,正常对照组软骨细胞内线粒体分布较为均匀,而CRF组线粒体呈现团块状,且发现CRF组软骨细胞线粒体和自噬溶酶体具有明显的共定位现象,这可能说明:CRF组线粒体出现了线粒体自噬进程,最终导致软骨细胞内线粒体数量减少,细胞由于供能不足而出现凋亡。而后,我们通过透射电镜观察了两组生长板软骨细胞的线粒体,发现正常对照组细胞内线粒体形态佳、分布较为均匀,而CRF组软骨细胞内线粒体较为聚集,出现较多的自噬小体吞噬病态的线粒体,这就从微观层次上证明了CRF软骨细胞内发生了线粒体自噬。
我们选取4周龄幼鼠相当于人类5~7岁,10周龄幼鼠相当于人类12~14岁,基本上可以模拟儿童发育的年龄。通过本研究,我们发现当CRF发生时幼鼠胫骨生长板软骨细胞出现较多的线粒体自噬现象,造成细胞内线粒体数量减少、细胞供能不足而导致细胞凋亡增多,最终造成没有足够的软骨细胞转变为骨细胞而使胫骨长度变短。
综上,本研究发现,当幼鼠CRF发生时胫骨生长板软骨细胞内出现较多的线粒体自噬现象并最终导致了软骨细胞凋亡。那么,当CRF发生时,究竟是什么因素造成了长骨生长板区软骨细胞内出现较多的线粒体自噬,其究竟是某种因素的后续效应,还是造成生长板发育不良的始动因素,这还需要进一步的研究与探讨。

参考文献

[1]
Escobedo-Monge MF, Ayala-Macedo G, Sakihara G, et al. Effects of zinc supplementation on nutritional status in children with chronic kidney disease: a randomized trial[J]. Nutrients, 2019, 11(11): 2671. DOI: 10.3390/nu11112671.
Background: Zinc is an essential micronutrient for human beings and its deficiency affects their normal growth and development. Objective: The main aim was to evaluate the effect of two doses of zinc supplementation (ZS) on the nutritional status in chronic kidney disease (CKD) children. Methods: A randomized-trial multicentric study was conducted in 48 CKD (23 females) patients under 18-years-old, for a year. At random, participants took 30 or 15 mg/day of ZS, respectively. Anthropometric measurements and biochemical analysis were performed. Hypozincemia was determined by serum zinc concentration (SZC) using atomic absorption spectrophotometry. The positive or negative change in patients’ body mass index (BMI) Z-score, serum albumin, zinc and C-reactive protein (CRP) levels were used to evaluate the effect of ZS. Results: Mean SZC was normal before and after ZS. Despite ZS, there were no significant changes in serum albumin, zinc and CRP levels. A positive and significant association was observed between SZC and serum albumin before (p = 0.000) and after (p = 0.007) ZS. In both groups of ZS, there was a small but positive and significant change in body mass and normalization in BMI Z-score, hypoalbuminemia, hypozincemia and high CRP, especially with 30 mg/day of ZS. Conclusions: Zinc supplementation may be beneficial for nutritional status in children and adolescents with CKD.
[2]
Lui JC, Jee YH, Garrison P, et al. Differential aging of growth plate cartilage underlies differences in bone length and thus helps determine skeletal proportions[J]. PLoS Biol, 2018, 16(7): e2005263. DOI: 10.1371/journal.pbio.2005263.
[3]
王小健, 张志华, 张健, 等. 慢性肾功能不全大鼠胫骨生长板软骨细胞自噬功能下降对细胞凋亡的影响[J]. 中华医学杂志, 2020, 100(2): 141-145. DOI: 10.3760/cma.j.issn.0376-2491.2020.02.012.
[4]
Wang FS, Kuo CW, Ko JY, et al. Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy[J]. Antioxidants (Basel), 2020, 9(9): 810. DOI: 10.3390/antiox9090810.
[5]
Ni Z, Kuang L, Chen H, et al. The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1β production of macrophages and aggravated synovitis in osteoarthritis[J]. Cell Death Dis, 2019, 10(7): 522. DOI: 10.1038/s41419-019-1739-2.
Synovitis, a common clinical symptom for osteoarthritis (OA) patients, is highly related to OA pathological progression and pain manifestation. The activated synovial macrophages have been demonstrated to play an important role in synovitis, but the mechanisms about macrophage activation are still not clear. In this study, we found that the exosome-like vesicles from osteoarthritic chondrocytes could be a new biological factor to stimulate inflammasome activation and increase mature IL-1β production in macrophages. The degraded cartilage explants produced more exosome-like vesicles than the nondegraded ones, while the exosome-like vesicles from chondrocytes could enter into joint synovium tissue and macrophages. Moreover, the exosome-like vesicles from osteoarthritic chondrocytes enhanced the production of mature IL-1β in macrophages. These vesicles could inhibit ATG4B expression via miR-449a-5p, leading to inhibition of autophagy in LPS-primed macrophages. The decreased autophagy promoted the production of mitoROS, which further enhanced the inflammasome activation and subsequent IL-1β processing. Ultimately, the increase of mature IL-1β may aggravate synovial inflammation and promote the progression of OA disease. Our study provides a new perspective to understand the activation of synovial macrophages and synovitis in OA patients, which may be beneficial for therapeutic intervention in synovitis-related OA patients.
[6]
Blanco FJ, Rego-Pérez I. Mitochondria and mitophagy: biosensors for cartilage degradation and osteoarthritis[J]. Osteoarthritis Cartilage, 2018, 26(8): 989-991. DOI: 10.1016/j.joca.2018.05.018.
[7]
Liang J, Cao R, Wang X, et al. Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2[J]. Cell Res, 2017, 27(3): 329-351. DOI: 10.1038/cr.2016.159.
Pyruvate kinase M2 isoform (PKM2) catalyzes the last step of glycolysis and plays an important role in tumor cell proliferation. Recent studies have reported that PKM2 also regulates apoptosis. However, the mechanisms underlying such a role of PKM2 remain elusive. Here we show that PKM2 translocates to mitochondria under oxidative stress. In the mitochondria, PKM2 interacts with and phosphorylates Bcl2 at threonine (T) 69. This phosphorylation prevents the binding of Cul3-based E3 ligase to Bcl2 and subsequent degradation of Bcl2. A chaperone protein, HSP90α1, is required for this function of PKM2. HSP90α1's ATPase activity launches a conformational change of PKM2 and facilitates interaction between PKM2 and Bcl2. Replacement of wild-type Bcl2 with phosphorylation-deficient Bcl2 T69A mutant sensitizes glioma cells to oxidative stress-induced apoptosis and impairs brain tumor formation in an orthotopic xenograft model. Notably, a peptide that is composed of the amino acid residues from 389 to 405 of PKM2, through which PKM2 binds to Bcl2, disrupts PKM2-Bcl2 interaction, promotes Bcl2 degradation and impairs brain tumor growth. In addition, levels of Bcl2 T69 phosphorylation, conformation-altered PKM2 and Bcl2 protein correlate with one another in specimens of human glioblastoma patients. Moreover, levels of Bcl2 T69 phosphorylation and conformation-altered PKM2 correlate with both grades and prognosis of glioma malignancy. Our findings uncover a novel mechanism through which mitochondrial PKM2 phosphorylates Bcl2 and inhibits apoptosis directly, highlight the essential role of PKM2 in ROS adaptation of cancer cells, and implicate HSP90-PKM2-Bcl2 axis as a potential target for therapeutic intervention in glioblastoma.
[8]
Crump C, Sundquist J, Winkleby MA, et al. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study[J]. BMJ, 2019, 365: l1346. DOI: 10.1136/bmj.l1346.
[9]
Mizuhashi K, Ono W, Matsushita Y, et al. Resting zone of the growth plate houses a unique class of skeletal stem cells[J]. Nature, 2018, 563(7730): 254-258. DOI: 10.1038/s41586-018-0662-5.
[10]
Picton ML, Moore PR, Mawer EB, et al. Down-regulation of human osteoblast PTH/PTHrP receptor mRNA in end-stage renal failure[J]. Kidney Int, 2000, 58(4): 1440-1449. DOI: 10. 1046/j.1523-1755.2000.00306.x.
[11]
王小健, 张健, 周晓霜, 等. 慢性肾功能不全大鼠胫骨生长板甲状旁腺素相关蛋白受体的表达及其对胫骨延长的影响[J]. 中华肾脏病杂志, 2019, 35(6): 426-431. DOI: 10.3760/cma.j.issn.1001-7097.2019.06.005.
[12]
Huang LW, Huang TC, Hu YC, et al. Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy[J]. Biochem Biophys Res Commun, 2020, 521(1): 50-56. DOI: 10.1016/j.bbrc.2019.10.066.
[13]
Cho DH, Kim JK, Jo EK. Mitophagy and innate immunity in infection[J]. Mol Cells, 2020, 43(1): 10-22. DOI: 10.14348/molcells.2020.2329.
[14]
Kang L, Liu S, Li J, et al. Parkin and Nrf2 prevent oxidative stress-induced apoptosis in intervertebral endplate chondrocytes via inducing mitophagy and anti-oxidant defenses[J]. Life Sci, 2020, 243: 117244. DOI: 10.1016/j.lfs.2019.117244.
[15]
Hu S, Zhang C, Ni L, et al. Stabilization of HIF-1α alleviates osteoarthritis via enhancing mitophagy[J]. Cell Death Dis, 2020, 11(6): 481. DOI: 10.1038/s41419-020-2680-0.
Mitochondrial dysfunction leads to osteoarthritis (OA) and disc degeneration. Hypoxia inducible factor-1α (HIF-1α) mediated mitophagy has a protective role in several diseases. However, the underlying mechanism of HIF-1α mediated mitophagy in OA remains largely unknown. This current study was performed to determine the effect of HIF-1α mediated mitophagy on OA. Therefore, X-ray and tissue staining including HE staining, safranin O-fast green (S-O) and Alcian Blue were used to assess imageology and histomorphology differences of mouse knee joint. Transcriptional analysis was used to find the possible targets in osteoarthritis. Western blot analysis, RT-qPCR and immunofluorescence staining were used to detect the changes in gene and protein levels in the vitro experiment. The expression of HIF-1α was increased in human and mouse OA cartilage. HIF-1α knockdown by siRNA further impair the hypoxia-induced mitochondrial dysfunction; In contrast, HIF-1α mediated protective role was reinforced by prolylhydroxylase (PHD) inhibitor dimethyloxalylglycine (DMOG). In addition, HIF-1α stabilization could alleviate apoptosis and senescence via mitophagy in chondrocytes under hypoxia condition, which could also ameliorate surgery-induced cartilage degradation in mice OA model. In conclusion, HIF-1α mediated mitophagy could alleviate OA, which may serve as a promising strategy for OA treatment.
[16]
He Y, Wu Z, Xu L, et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis[J]. Cell Mol Life Sci, 2020, 77(19): 3729-3743. DOI: 10.1007/s00018-020-03497-9.
Osteoarthritis is the most common degenerative joint disease and causes major pain and disability in adults. It has been reported that mitochondrial dysfunction in chondrocytes is associated with osteoarthritis. Sirtuins are a family of nicotinamide adenine dinucleotide-dependent histone deacetylases that have the ability to deacetylate protein targets and play an important role in the regulation of cell physiological and pathological processes. Among sirtuin family members, sirtuin 3, which is mainly located in mitochondria, can exert its deacetylation activity to regulate mitochondrial function, regeneration, and dynamics; these processes are presently recognized to maintain redox homeostasis to prevent oxidative stress in cell metabolism. In this review, we provide present opinions on the effect of mitochondrial dysfunction in osteoarthritis. Furthermore, the potential protective mechanism of SIRT3-mediated mitochondrial homeostasis in the progression of osteoarthritis is discussed.
[17]
Cetrullo S, D'Adamo S, Guidotti S, et al. Hydroxytyrosol prevents chondrocyte death under oxidative stress by inducing autophagy through sirtuin 1-dependent and-independent mechanisms[J]. Biochim Biophys Acta, 2016, 1860(6): 1181-1191. DOI: 10.1016/j.bbagen.2016.03.002.
Hydroxytyrosol (HT), a major phenolic antioxidant found in olive oil, can afford protection from oxidative stress in several types of non-tumoral cells, including chondrocytes. Autophagy was recently identified as a protective process during osteoarthritis (OA) development and critical for survival of chondrocytes. Therefore we have investigated the possibility to modulate chondrocyte autophagy by HT treatment.DNA damage and cell death were estimated in human C-28/I2 and primary OA chondrocytes exposed to hydrogen peroxide. Autophagic flux and mitophagy were monitored by measuring levels and location of autophagy markers through western blot, immunostaining and confocal laser microscopy. Late autophagic vacuoles were stained with monodansylcadaverine. The involvement of sirtuin 1 (SIRT-1) was evaluated by immunohistochemistry, western blot and gene silencing with specific siRNA.HT increases markers of autophagy and protects chondrocytes from DNA damage and cell death induced by oxidative stress. The protective effect requires the deacetylase SIRT-1, which accumulated in the nucleus following HT treatment. In fact silencing of this enzyme prevented HT from promoting the autophagic process and cell survival. Furthermore HT supports autophagy even in a SIRT-1-independent manner, by increasing p62 transcription, required for autophagic degradation of polyubiquitin-containing bodies.These results support the potential of HT as a chondroprotective nutraceutical compound against OA, not merely for its antioxidant ability, but as an autophagy and SIRT-1 inducer as well.HT may exert a cytoprotective action by promoting autophagy in cell types that may be damaged in degenerative diseases by oxidative and other stress stimuli.Copyright © 2016 Elsevier B.V. All rights reserved.
[18]
Maneiro E, Martín MA, de Andres MC, et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes[J]. Arthritis Rheum, 2003, 48(3): 700-708. DOI: 10.1002/art.10837.
Osteoarthritis (OA) is a degenerative rheumatic disease that is associated with extracellular matrix degradation and chondrocyte apoptosis in the articular cartilage. The role of mitochondria in degenerative diseases is widely recognized. We undertook this study to evaluate mitochondrial function in normal and OA chondrocytes and to examine age‐related changes in mitochondria.
[19]
Kim HA, Lee YJ, Seong SC, et al. Apoptotic chondrocyte death in human osteoarthritis[J]. J Rheumatol, 2000, 27(2): 455-462.
To define apoptotic chondrocyte death and the expression of Bcl-2, Bax, and Fas in human osteoarthritis (OA) cartilage.Cartilage samples were obtained from patients with knee OA at the time of joint replacement surgery and from normal autopsy cases. In OA, sections were obtained both from the lesional area, usually within 1 cm of bony exposure, and from the non-lesional area, which had macroscopically normal appearance or only mild surface irregularities. Apoptosis was verified by microscopic examination of hematoxylin and eosin stained specimens, TUNEL staining, electron microscopy, and DNA ladder analysis by electrophoresis. Immunohistochemistry was done to study the expression of Bcl-2, Bax, and Fas. Apoptotic cells and Bcl-2, Bax, and Fas positive cells were counted within defined microscopic fields. Expression of Bcl-2 and Bax was verified by Western blot.The percentage of apoptotic cells in the lesional area was significantly higher than in the non-lesional area in cartilage from the same patient with OA, while apoptotic cells were rarely seen in normal cartilage. This result was confirmed by TUNEL stain. Many chondrocytes with chromatin condensation were verified in electron microscopy, and DNA from OA lesional cartilage revealed a DNA ladder on electrophoresis. Bcl-2 and Fas expressions were significantly higher in the OA lesional area than in the non-lesional area. On the other hand, Bcl-2 expression in normal cartilage was significantly higher than in OA cartilage. There was no significant difference in Bax expression among normal, OA lesional, and OA non-lesional cartilage.These results show that apoptotic chondrocyte death occurs more frequently in OA compared to normal cartilage and in OA lesional compared to OA non-lesional cartilage. The different expression patterns of Bcl-2 and Fas in OA lesional and non-lesional cartilage suggest that they might be involved in the pathogenesis of OA.

利益冲突

所有作者声明无利益冲突

作者贡献声明

王小健:酝酿和设计实验、实施研究、采集数据、分析/解释数据、起草文章;徐威威、路晓、马月红、田伟、张宇明:实施研究;李荣山:获取研究经费、指导;李爱中:酝酿和设计实验、实施研究;常峰、苏云星:对文章的知识性内容作批评性审阅、获取研究经费、指导

基金

中国博士后科学基金(2020M680910)
山西省自然科学基金(201701D121161)
山西省重点研发计划项目(201803D31160)
山西省重点研发计划项目(201703D321027-4)
PDF(7967 KB)

1134

Accesses

0

Citation

Detail

段落导航
相关文章

/