PCSK9对足细胞脂质稳态和细胞损伤的作用及机制

吴美延, 陈志, 臧崇森, 马福哲, 侯洁, 许钟镐

PDF(3750 KB)
中华肾脏病杂志 ›› 2021, Vol. 37 ›› Issue (7) : 583-590. DOI: 10.3760/cma.j.cn441217-20201008-00088
基础研究

PCSK9对足细胞脂质稳态和细胞损伤的作用及机制

作者信息 +

Effect and mechanism of PCSK9 on lipid homeostasis and cell damage of podocytes

Author information +
History +

摘要

目的 探讨前蛋白转化酶枯草杆菌蛋白酶9(proprotein convertase subtilisin/kexin type 9,PCSK9)对足细胞脂质稳态和细胞损伤的影响及其作用机制。 方法 选取12周龄C57BL/6野生型小鼠(对照组,n=10)和系统性敲除PCSK9基因型小鼠(PCSK9 KO组,n=10)为动物模型,经心脏全身灌注后取肾组织。体外培养小鼠足细胞,用干扰小RNA(siRNA)敲低足细胞PCSK9的表达。用荧光染料BODIPY 493/503染色法观察小鼠肾组织肾小球及体外培养足细胞内的脂质蓄积程度;透射电子显微镜观察足细胞的足突、线粒体结构和脂滴大小及其分布;TUNEL染色法评估肾小球内的细胞凋亡;实时荧光定量PCR(qPCR)和Western印迹法检测线粒体功能相关关键酶过氧化物酶体增殖物激活受体C辅激活因子1α(peroxisome proliferator-activated receptor-C coactivator 1α,PGC-1α)、肉毒碱棕榈酰转移酶1(carnitine palmitoyltransferase 1,CPT-1)、乙酰辅酶A氧化酶1(acetyl CoA oxidase 1,Acox-1),以及凋亡相关指标的mRNA和蛋白表达水平。 结果 与对照组相比,PCSK9 KO组小鼠肾小球内脂质蓄积更显著;肾组织内线粒体功能相关关键酶PGC-1α蛋白和mRNA相对表达量均显著降低,CPT-1和Acox-1的mRNA相对表达量也均显著降低(均P<0.05);肾小球足细胞内线粒体肿胀、嵴消失,足细胞的足突部分融合、消失;肾小球内细胞凋亡指数增加(P<0.05)。与对照组比较,体外培养的PCSK9 siRNA组足细胞内脂质蓄积显著,线粒体功能相关关键酶PGC-1α、CPT-1和Acox-1的mRNA相对表达量下降,线粒体结构受损,细胞凋亡指数增加(均P<0.05)。 结论 PCSK9 参与足细胞的脂代谢平衡,PCSK9 表达减少增加足细胞内脂质沉积,诱导线粒体结构及功能受损,导致细胞凋亡。

Abstract

Objective To evaluate the effect of proprotein convertase subtilisin/kexin type 9 (PCSK9) on lipid homeostasis and cellular injury of podocytes, and to clarify its mechanism. Methods Twelve-week old C57BL/6 wild-type mice (n=10) and PCSK9 knockout (PCSK9 KO) mice (n=10) were selected as the animal models. The renal tissues were taken after perfusion through heart. Mouse podocytes were transfected with PCSK9 siRNA to downregulate PCSK9 expression. BODIPY 493/503 staining was performed for evaluating lipid accumulation, and standard transmission electron microscopy (TEM) was used to observe the foot process of podocytes, the shape of mitochondria and lipid droplet in podocytes. TUNEL staining was carried out to evaluate cell apoptosis in glomerulus. The parameters about mitochondria function (key enzymes such as PGC-1α, CPT-1 and Acox-1) and apoptosis were quantified through qPCR and western blotting. Results The lipid accumulation in glomerulus of PCSK9 KO mice were more serious than controls. The expression of PGC-1α protein and PGC-1α, CPT-1 and Acox-1 mRNA in PCSK9 KO mouse kidney tissues were decreased than controls (all P<0.05), and mitochondria swelling and cristae disappearance in podocytes of PCSK9 KO mice were observed. In PCSK9 KO group, the foot process of podocytes partially fused and disappeared, and the apoptosis index increased compared with the control group (P<0.05). In vitro, compared with the control group, the lipid accumulation was more significant, transcription level of key enzymes related to mitochondrial function was decreased, mitochondrial structure was damaged and the apoptosis index was increased in cultured podocyte PCSK9 siRNA group (all P<0.05). Conclusions PCSK9 is involved in the lipid homeostasis of podocytes. The decrease of PCSK9 results in the increase of intracellular lipid accumulation, accompanied by the mitochondrial structure damage and disfunction of podocytes, and leads to cell apoptosis.

关键词

足细胞 / 线粒体 / 脂代谢障碍 / 脂质沉积 / 前蛋白转化酶枯草杆菌蛋白酶9 / 凋亡

Key words

Podocytes / Mitochondria / Lipid metabolism disorders / Lipid deposition / Proprotein convertase subtilisin/kexin type 9 / Apoptosis

编辑

孙玉玲

引用本文

导出引用
吴美延 , 陈志 , 臧崇森 , 马福哲 , 侯洁 , 许钟镐. PCSK9对足细胞脂质稳态和细胞损伤的作用及机制[J]. 中华肾脏病杂志, 2021, 37(7): 583-590. DOI: 10.3760/cma.j.cn441217-20201008-00088.
Wu Meiyan , Chen Zhi , Zang Chongsen , Ma Fuzhe , Hou Jie , Xu Zhonggao. Effect and mechanism of PCSK9 on lipid homeostasis and cell damage of podocytes[J]. Chinese Journal of Nephrology, 2021, 37(7): 583-590. DOI: 10.3760/cma.j.cn441217-20201008-00088.
肾小球及足细胞内脂质蓄积是糖尿病肾病、局灶节段性肾小球硬化(focal segmental glomurularsclerosis,FSGS)等多种肾脏疾病的典型病理特征之一[1-2],与蛋白尿以及肾小球硬化密切相关[3]。足细胞脂质代谢紊乱和脂质异常沉积可引起细胞毒性,进而诱导足细胞损伤及凋亡[4]。然而,足细胞内脂质异常沉积引发足细胞损伤的具体机制至今尚未明了。前蛋白转化酶枯草溶菌素9(proprotein convertase subtilisin/kexin type 9,PCSK9)是哺乳系前蛋白转换酶家族的一种可溶性的分泌性丝氨酸内切酶[5],是低密度脂蛋白受体(low density lipoprotein receptor,LDLR)、极低密度脂蛋白受体、载脂蛋白E受体2、CD36等LDLR家族脂质通道蛋白有效的转录后调节因子[6]。近期研究表明,PCSK9对细胞内脂质代谢平衡有重要的调节作用 [7-8]。我们在前期研究中发现,PCSK9参与肾组织细胞的脂代谢平衡,降低PCSK9表达可增加肾组织内脂质沉积,引起肾固有细胞的损伤[9]。本研究旨在进一步探讨PCSK9对肾小球及足细胞内脂质稳态的影响和其细胞损伤机制。

材料与方法

1. 主要试剂: 小鼠PCSK9 siRNA(德国Thermo Fisher Scientific);Lipofectamine RNA iMAX试剂盒(美国Invitrogen);BODIPY 493/503(美国Life Technologies);总胆固醇、三酰甘油(triglyceride,TG)检测试剂盒(美国Cayman);TUNEL染色试剂盒(美国Milipore);PCSK9兔单克隆抗体(英国Abcam);过氧化物酶体增殖物激活受体C辅激活因子1α(peroxisome proliferator-activated receptor-C coactivator-1α,PGC-1α)兔单克隆抗体(英国Abcam);凋亡相关因子B淋巴细胞瘤2(B-cell lymphoma 2,Bcl-2)、Bcl-2相关X蛋白(Bax)(美国Santa Cruz);活化型半胱氨酸天冬氨酸蛋白酶3(Cleaved caspase 3)(美国Cell Signaling);β-actin(美国Sigma);辣根过氧化物酶标记的二抗(美国GenDEPOT)。
2. 动物模型及分组: 分别用野生型 C57BL/6小鼠和系统性敲除PCSK9基因的 C57BL/6小鼠作为对照组(n=10)和PCSK9基因敲除(PCSK9 knockout,PCSK9 KO)组(n=10)。给予普通饲料饲养至12周后,用代谢笼收集24 h尿液。腹腔内注射30 mg/g戊巴比妥钠诱导深度麻醉,心脏取血0.8~1.0 ml。经心脏全身灌注生理盐水后取肾,分别用于制作石蜡组织切片、冰冻切片和电镜组织切片,剩下部分置于-80℃冷冻保存,用于相关指标的检测。
3. 足细胞培养及分组: 永生化小鼠足细胞株常规复苏后,移入含10%胎牛血清、100 U/ml重组小鼠干扰素γ(INF-γ)和1%青-链双抗生素的RPMI 1640细胞培养液,置于5%CO2、 33℃的细胞孵箱中恒温培养,每2天更换1次培养液,增殖培养7~10 d后更换为含10%胎牛血清和1%青-链双抗生素的RPMI 1640细胞培养液(不含INF-γ),置于5%CO2、37℃恒温培养箱中分化培养10~14 d。分化成熟的足细胞被分为正常对照组和PCSK9 siRNA组,后者用于转染PCSK9 siRNA。
4. PCSK9 siRNA转染小鼠足细胞: 分别将 5 nmol/L PCSK9 siRNA、siRNA转染试剂加入Opti-MEM稀释液,充分混匀,制作成siRNA稀释液和RNA iMAX稀释液,室温静置5 min,将RNA iMAX稀释液加至siRNA稀释液,充分混合后室温静置15 min使其充分结合,转染复合物制备完成。将适量转染复合物滴加至有全培养基的小鼠足细胞中,前后轻微移动培养皿,混合均匀,放回至保温箱中,8 h后更换培养液,继续培养48 h后收集细胞。
5. 免疫组织化学染色(IHC): 石蜡切片常规脱蜡水化;1% H2O2浸泡15 min,PBS冲洗;0.05%胰蛋白酶液37℃下作用30 min,PBS冲洗;10%山羊血清孵育15 min抑制非特异性结合;滴加PCSK9一抗(1:100),4℃下过夜,PBS冲洗;滴加二抗(生物素化兔抗鼠 IgG,稀释倍数 1:100) 37℃下孵育30 min,PBS冲洗;滴加链霉素抗生物素蛋白-过氧化物酶溶液,37℃下孵育30 min;DAB显色,水洗后用苏木素复染,透明封片。
6. 过碘酸-希夫(PAS)染色: 肾组织石蜡切片常规脱蜡入水;1%过碘酸水溶液染 10~15 min,蒸馏水清洗;放入Schiff试剂反应15~30 min,0.5%亚硫酸氢钠处理3次,流水冲洗 5~10 min;苏木素染核1.5 min,蒸馏水清洗;放入1%盐酸乙醇分化数秒,蒸馏水清洗;镜下观察肾小球染色情况;不同浓度乙醇梯度脱水、二甲苯透明、树胶封片。光学显微镜(日本Olympus,BX51型)400 ×视野下观察肾小球组织学改变。每组小鼠观察50个肾小球,计算肾小球硬化指数。采用半定量法对肾小球硬化程度进行分级,分级标准:0 级:所有肾小球均正常;1级:硬化区域<25%;2级:硬化区域26%~50%;3级:硬化区域51%~75%;4级:硬化区域76%~100%。肾小球硬化指数计算公式:肾小球硬化指数=[(1×n1)+(2×n2)+(3×n3)+(4×n4)]/(n0+n1+n2+n3+n4),nx为不同硬化程度肾小球的数量[10]
7. 标准透射电子显微镜检查: 用2%多聚甲醛和2.5%戊二醛混合液浸泡固定肾组织,24 h后冲洗、脱水,树脂包埋后切片,透射电子显微镜下观察肾小球内足细胞足突改变并计算足突融合率,观察足细胞内线粒体结构、脂滴分布及大小。足突融合率计算方法:足突融合率=基底膜足突融合总长度/基底膜总长度。
8. BODIPY 493/503染色: 肾组织冰冻切片(厚度20 mm)用丙酮液固定,PBS冲洗3次后滴加5 mg/ml BODIPY 493/503染色试剂(附着FITC荧光素),37℃保温箱放置30 min,然后与DAPI在常温下反应15 min,激光扫描共聚焦显微镜下观察绿色荧光显色情况,评估肾小球及体外培养足细胞内的脂质蓄积程度。
9. TUNEL染色: 切片常规脱蜡,室温下用3%H2O2处理、蛋白酶K消化后,加入标记缓冲液TDT和DIG-dUPT于37℃下标记1 h,然后加封闭液封闭30 min,再加生物素化抗地高辛抗体,TBS洗涤后加DAB显色,苏木素轻度复染,脱水、封片后显微镜下观察,细胞核呈棕黄色为阳性。TUNEL染色阳性半定量分析:计算每个肾小球内TUNEL染色阳性细胞比例以计算肾小球的凋亡指数。肾小球凋亡指数=(阳性细胞个数/有核细胞总数)×100%。
10. 细胞总胆固醇及TG测定: 对照组和PCSK9 siRNA组收集3×105细胞,浸泡于200 ml脂质提取混合液(氯仿+异丙醇+10% NP-40)中,用高效搅拌器搅拌后常温下离心10 min,提取上层液体及有机相放入EP管,50℃保温挥发液相后,用酶法测定细胞总胆固醇和TG水平。
11. Western印迹: 收集各组小鼠肾组织或小鼠足细胞,加入含蛋白酶抑制剂(PMSF、cocktail)的RIPA细胞裂解液(PMSF:cocktail:RIPA=1:1:100),高效搅拌器搅拌并提取总蛋白,BCA法检测蛋白浓度,等量蛋白上样,8%~13%不同浓度的十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),湿转至聚偏二氟乙烯(PVDF)膜,5%脱脂牛奶室温封闭30 min。分别用PCSK9(1:1 000)、PGC-1α(1:500)、Bcl-2(1:500)、Bax(1:500)、Cleaved caspase 3(1:500)一抗4℃孵育过夜,以β-actin(1:5 000)为内参照。PVDF膜采用TBST 于 摇床上洗涤3次,每次5 min,加入二抗,室温下孵育1 h。红外成像系统(美国LI-COR Odyssey)显影后,应用Image J软件进行积分吸光度(A)的半定量分析。
12. 实时荧光定量PCR(qPCR): Trizol试剂(美国Invitrogen)提取小鼠肾组织或小鼠足细胞总RNA,分光光度计法测定RNA浓度。取1 μg RNA 反转录合成cDNA,以稀释100倍的cDNA为模板进行qPCR。观察指标包括PCSK9、PGC-1α、肉毒碱棕榈酰转移酶1(carnitine palmitoyltransferase 1,CPT-1)、乙酰辅酶A氧化酶1(acetyl CoA oxidase 1,Acox-1)、Bax、Bcl-2,以18S rRNA作为内参基因。引物由北京擎科新业生物技术有限公司合成,引物序列详见表1。用2-ΔΔCT 法计算各基因的mRNA相对表达量。
表1 各基因引物序列
基因名称 上游引物序列 下游引物序列
PCSK9 5'-AGTAGCAGTGACCTGTTGGG-3' 5'-TGGGCGAAGACAAAGGAGTC-3'
PGC-1α 5'-AGTCCCATACACAACCGCAG-3' 5'-CCCTTGGGGTCATTTGGTGA-3'
CPT-1 5'-GGTCTTCTCGGGTCGAAAGC-3' 5'-TCCTCCCACCAGTCACTCAC-3'
Acox-1 5'-CTTGGATGGTAGTCCGGAGA-3' 5'-TGGCTTCGAGTGAGGAAGTT-3'
Bax 5'-TCCACCAAGAAGCTGAGCGAG-3' 5'-GTCCAGCCCATGATGGTTCT-3'
Bcl-2 5'-TGGGATGCCTTTGTGGAACT-3' 5'-CAGCCAGGAGAAATCAAACAGA-3'
18S rRNA 5'-AACTAAGAACGGCCATGCAC-3' 5'-CCTGCGGCTTAATTTGACTC-3'
注:PCSK9:前蛋白转化酶枯草溶菌素9;PGC-1α:过氧化物酶体增殖物激活受体激活因子1α;CPT-1:肉毒碱棕榈酰转移酶1;Acox-1:乙酰辅酶A氧化酶1;Bax:Bcl-2相关X蛋白;Bcl-2:B淋巴细胞瘤2;18S rRNA:内参照基因
13. 统计学方法: 采用 SPSS 17.0 软件进行数据的统计学处理和分析。符合正态分布的计量资料以x¯±s形式表示,两组间比较采用t检验。P<0.05视为差异有统计学意义。

结果

1. PCSK9基因敲除对肾小球及足细胞损伤的影响: 与对照组比较,IHC可见PCSK9 KO组肾小球内PCSK9蛋白表达明显减少,PAS染色显示肾小球体积增大,小球内系膜基质增多,阳性反应物增多;透射电子显微镜下可见PCSK9 KO组肾小球内足细胞的足突变短,有不同程度的融合,部分脱落(P<0.05)。TUNEL染色可见PCSK9 KO组小鼠肾小球内呈棕黄色核染色数目较对照组明显增多,肾小球细胞凋亡指数显著高于对照组(P<0.05),提示肾小球内凋亡细胞增加。见图1
图1 PCSK9基因敲除对肾小球及足细胞损伤的影响
注:IHC:免疫组织化学染色;PAS:过碘酸-希夫染色;TEM:透射电子显微镜;与对照组比较,aP<0.05

Full size|PPT slide

2. PCSK9基因敲除对足细胞线粒体结构和功能的影响: Western印迹和qPCR结果显示,与对照组比较,PCSK9 KO组小鼠肾组织内线粒体能量代谢关键酶PGC-1α蛋白和mRNA相对表达量均显著减少,其他相关蛋白酶CPT-1和Acox-1的mRNA相对表达量也均显著减少(均P<0.05)。见图2A图2B。透射电子显微镜下可见PCSK9 KO组小鼠肾小球足细胞内线粒体明显肿胀,线粒体嵴消失(见图2C,黑色箭头所示)。BODIPY 493/503染色可见PCSK9 KO组小鼠肾小球内呈深绿色的脂质染色较对照组显著增多(见图2D白色箭头所示)。
图2 PCSK9基因敲除对足细胞线粒体结构和功能的影响
注:A:Western印迹;B:实时荧光定量PCR;C:透射电子显微镜;D:BODIPY 493/503染色;与对照组比较,aP<0.05

Full size|PPT slide

3. PCSK9表达减少对足细胞线粒体结构和功能的影响: 细胞实验结果显示,与对照组比较,PCSK9 siRNA组小鼠足细胞内PCSK9蛋白相对表达量显著降低(P<0.05),见图3A。qPCR结果显示,PCSK9 siRNA组足细胞内PGC-1α、CPT-1和Acox-1 mRNA的相对表达量较对照组均显著减少(均P<0.05),见图3B。透射电子显微镜下见PCSK9 siRNA组足细胞内线粒体明显肿胀,线粒体数量及线粒体内嵴数量较对照组明显减少(见图3C,黑色箭头所示)。
图3 PCSK9表达减少对小鼠足细胞线粒体结构和功能的影响
注:A:Western印迹;B:实时荧光定量PCR;C:透射电子显微镜;与对照组比较,aP<0.05

Full size|PPT slide

4. PCSK9表达减少对足细胞内脂质稳态的影响: BODIPY 493/503染色结果显示,与对照组比较,PCSK9 siRNA组足细胞内脂质沉积显著增多(图4A白色箭头所示,呈深绿色)。透射电镜下可见PCSK9 siRNA组足细胞内数个大小不等的脂滴(图4A黑色箭头所示)。ELISA检测结果显示,PCSK9 siRNA组足细胞内总胆固醇和TG含量较对照组均显著增多(均P<0.05),见图4B
图4 PCSK9表达减少对小鼠足细胞内脂质蓄积的影响
注:A:BODIPY 493/503染色和透射电子显微镜(TEM);B:ELISA;与对照组比较,aP<0.05

Full size|PPT slide

5. PCSK9表达减少对足细胞凋亡的影响: Western印迹结果显示,与对照组比较,PCSK9 siRNA组小鼠足细胞内细胞凋亡相关蛋白Bax和Cleaved caspase 3的蛋白相对表达量均增多,抗细胞凋亡蛋白Bcl-2的蛋白相对表达量下降(均P<0.05)。qPCR结果显示,PCSK9 siRNA组足细胞Bax/Bcl-2比值较对照组显著升高(P<0.05)。见图5
图5 PCSK9表达减少对小鼠足细胞凋亡的影响
注:A:Western印迹;B:实时荧光定量PCR;与对照组比较,aP<0.05

Full size|PPT slide

讨论

足细胞内脂质异常沉积是导致足细胞功能障碍和足细胞减少症的重要病理生理因素[7]。足细胞在肾小球内形成裂孔隔膜,后者对血浆蛋白起滤过屏障作用。研究表明足细胞裂孔膜是类脂筏结构,足细胞内胆固醇的代谢紊乱可导致类脂筏的功能异常[11-12]。Merscher-Gomez等[13]发现人足细胞表达脂质及胆固醇代谢相关蛋白ATP结合盒载运体(ATP-binding cassette transporter A1,ABCA1)、3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl-coenzyme reductase,HMG-CR)和LDLR。提示足细胞内存在载脂蛋白介导的脂质平衡代谢,细胞内外脂转运代谢平衡失调可能参与足细胞内脂质异常沉积的病理生理。
PCSK9是近年被发现的丝氨酸蛋白酶,主要由肝细胞合成并分泌至循环系统,因其对肝脏低密度脂蛋白代谢的调节作用而备受关注,PCSK9在肾脏、胰岛及大脑等肝外组织也有表达[6]。近期研究结果证实,PCSK9对细胞内脂质稳态有重要调节作用。Mbikay等[14]发现系统性敲除PCSK9小鼠的胰腺组织内脂质含量增加,细胞内过表达PCSK9可改善胰腺组织内的脂质沉积和胰岛β细胞的损伤程度。PCSK9对动脉粥样硬化斑块形成也有直接的作用,斑块内血管平滑肌细胞产生和分泌PCSK9,导致脂质向巨噬细胞的摄入减少,从而干预泡沫细胞和动脉粥样斑块的形成[15]。我们先前的研究观察到PCSK9参与肾组织的脂质平衡代谢,PCSK9表达下降增加肾组织的脂质蓄积,诱导肾固有细胞的损伤和凋亡[9]。基于此研究结果,本研究进一步探讨PCSK9对足细胞脂质稳态的影响。体内实验选择系统性敲除PCSK9基因小鼠和野生型小鼠为动物模型,体外实验用PCSK9 siRNA转染方式建立细胞内稳定低表达PCSK9的小鼠足细胞,用正常足细胞株进行对照分析肾小球及足细胞内的脂质水平,观察PCSK9表达减少对细胞脂质沉积的影响。实验结果提示,PCSK9参与足细胞的脂代谢平衡,对足细胞内脂质沉积起负性调控作用。
线粒体氧化还原代谢功能与肾组织细胞的脂质代谢和平衡密切相关。线粒体功能下降引起细胞内脂质异常沉积,而过多的脂质负荷也可诱发线粒体结构和功能的破坏。糖尿病肾病患者肾穿刺组织内脂质氧化代谢相关关键酶如PGC-1α、CPT-1等表达明显下降,且脂滴显著增多[16]。典型糖尿病肾病动物模型Akita 和OVE26小鼠肾组织的线粒体脂肪酸氧化代谢水平明显下降[17],而线粒体保护剂SS-31的处理显著缓解高脂饮食诱导的C57BL/6糖尿病肾病小鼠肾小球内线粒体结构的改变,且减轻肾小球内的脂质蓄积[18]。也有研究观察到足细胞内过多的脂质蓄积引起脂毒性,诱导线粒体氧化应激和功能受损[4]。我们在体内观察到系统性敲除PCSK9小鼠肾小球内脂质蓄积较野生对照小鼠显著增多,足细胞的线粒体结构明显受损,肾组织内线粒体能量代谢相关关键酶的转录水平下降。在体外培养的小鼠足细胞内下调PCSK9表达后观察到细胞内脂质蓄积更显著,PGC-1α、CPT-1、Acox-1等关键酶转录水平减少,细胞内线粒体高度肿胀、线粒体嵴消失。这些实验结果提示PCSK9表达减少增加足细胞内脂质沉积,伴发线粒体结构受损和功能下降。
细胞内异常沉积的脂质通过产生活性氧(ROS)、诱导和释放炎性因子和纤维化因子、干扰细胞内信号传导等机制,引起细胞的损伤和功能失调[19-20]。足细胞内脂质代谢紊乱和过多脂质蓄积可引起细胞毒性,继而诱导足细胞损伤及凋亡[4]。我们的前期研究显示,系统性敲除PCSK9小鼠肾小球内脂质蓄积显著,尿白蛋白/肌酐比值升高,足细胞标志蛋白Podocin和Nephrin的转录减少[9]。本研究中我们观察到系统性敲除PCSK9小鼠足细胞的足突变短,出现不同程度的融合、部分脱落,肾小球内细胞凋亡较野生型小鼠明显增多。敲低体外培养的小鼠足细胞PCSK9后,细胞内脂质水平明显升高,细胞凋亡相关蛋白Cleaved caspase 3表达水平显著升高。上述结果提示PCSK9表达减少及其所致的细胞内脂质蓄积可诱导足细胞损伤和凋亡。Bax和Bcl-2分别是Bcl-2家族中最主要的促进和抑制凋亡蛋白,其构成比例是凋亡调控的关键因素,Bax/Bcl-2升高通过增加线粒体膜的通透性,释放促凋亡因子,继而诱导或加速细胞凋亡。在许多细胞凋亡中Bax表达升高,Bcl-2表达减少;有研究表明ROS、MAPK等多种信号通路参与调控其蛋白表达[21]。在体外小鼠足细胞内降低PCSK9表达后,我们检测到Bax蛋白水平升高,Bax/Bcl-2比值升高,同时也观察到线粒体结构受损,这一结果提示PCSK9表达减少诱导的足细胞凋亡可能是通过调节线粒体信号通路,考虑PCSK9表达减少增加足细胞内脂质负荷增加,继而产生过多的ROS和氧化应激,后者可能影响Bax/Bcl-2比值,加速了细胞凋亡,而PCSK9表达变化及其诱导的足细胞内脂质蓄积与Bcl-2家族经典凋亡相关蛋白水平之间是否存在相互作用,以及可能的作用机制需要进行更深入的研究来进一步阐明。
综上所述,本研究结果提示PCSK9参与足细胞的脂质代谢,PCSK9表达减少增加足细胞内脂质沉积,诱导线粒体结构及功能受损,最终导致细胞凋亡。

参考文献

[1]
Druilhet RE, Overturf ML, Kirkendall WM. Cortical and medullary lipids of normal and nephrosclerotic human kidney[J]. Int J Biochem, 1978, 9(10): 729-734. DOI: 10.1016/0020-711x(78)90040-x.
[2]
Nielsen H, Thomsen JL, Kristensen IB, et al. Accumulation of triglycerides in the proximal tubule of the kidney in diabetic coma[J]. Pathology, 2003, 35(4): 305-310. DOI: 10.1080/0031302031000150551.
[3]
Nosadini R, Tonolo G. Role of oxidized low density lipoproteins and free fatty acids in the pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes[J]. Nutr Metab Cardiovasc Dis, 2011, 21(2): 79-85. DOI: 10.1016/j.numecd.2010.10.002.
Oxidized lipids initiate and modulate the inflammatory cellular events in the arterial wall and the formation of macrophage foam cells. CD36 mediates the cellular uptake of ox-LDL through its recognition of specific truncated fatty acid moieties and oxidized phosphatidylcholine. Evidence has been reported that chemokine CXCL16, rather than CD36, is the main scavenger receptor in human podocytes mediating the uptake of ox-LDL. Ox-LDL induces loss of nephrin expression from cultured podocytes. It has been recently shown that nephrin once phosphorilated associates with PI3K and stimulates the Akt dependent signaling. This pathway plays a critical role in nephrin-actin-dependent cytoskeleton activation and remodeling, in the control of protein trafficking and in podocyte survival. An enhanced FFA uptake by podocytes is mediated by increased C36 scavenger receptor expression, together with a decrease of betaoxidation and in turn intracellular lipid accumulation. Accumulated FFA that is trapped into the mitochondrial matrix leads to mitochondrial ROS production, lipid peroxidation and mitochondrial damage and dysfunction. A disturbed transport and oxidation of FFA, paralleled by an impaired antioxidant response, damages podocyte structure and leads to glomerulopathy in early stages of nephrosis. Increased triglyceride synthesis and ox-and glycated LDL uptake by mesangial cells may also contribute to determine diabetic glomerulopathy. Oxidative processes are pivotal events in injury to renal tubular and epithelial cells exposed to ox-LDL. Notably CXCL16 are the main receptors for the uptake of ox-LDL in podocytes, whereas CD36 plays this role in tubular renal cells. In overt type 2 diabetes Ox-LDL and FFA damage podocyte function, SD-podocyte structure and tubulointerstitial tissue, at least partially, through different pathogenetic mechanisms. Further studies are needed to investigate the role of Ox-LDL and FFA on renal complications in obese, insulin resistant patients before the development of diabetes. The aim of the present review is to briefly elucidate the patterns of systemic lipid metabolism and the individual effects of lipotoxicity at glomerular and tubular level in the kidney of overt type 2 diabetic patients. These findings better elucidate our knowledge of diabetic glomerulopathy, beside and along with previous findings, in vivo and in vitro, on ox-LDL and FFA effects in mesangial cells.Copyright © 2010 Elsevier B.V. All rights reserved.
[4]
de Vries AP, Ruggenenti P, Ruan XZ, et al. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease[J]. Lancet Diabetes Endocrinol, 2014, 2(5): 417-426. DOI: 10.1016/S2213-8587(14)70065-8.
[5]
Poirier S, Mayer G, Benjannet S, et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2[J]. J Biol Chem, 2008, 283(4): 2363-2372. DOI: 10.1074/jbc.M708098200.
The proprotein convertase PCSK9 gene is the third locus implicated in familial hypercholesterolemia, emphasizing its role in cardiovascular diseases. Loss of function mutations and gene disruption of PCSK9 resulted in a higher clearance of plasma low density lipoprotein cholesterol, likely due to a reduced degradation of the liver low density lipoprotein receptor (LDLR). In this study, we show that two of the closest family members to LDLR are also PCSK9 targets. These include the very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) implicated in neuronal development and lipid metabolism. Our results show that wild type PCSK9 and more so its natural gain of function mutant D374Y can efficiently degrade the LDLR, VLDLR, and ApoER2 either following cellular co-expression or re-internalization of secreted human PCSK9. Such PCSK9-induced degradation does not require its catalytic activity. Membrane-bound PCSK9 chimeras enhanced the intracellular targeting of PCSK9 to late endosomes/lysosomes and resulted in a much more efficient degradation of the three receptors. We also demonstrate that the activity of PCSK9 and its binding affinity on VLDLR and ApoER2 does not depend on the presence of LDLR. Finally, in situ hybridization show close localization of PCSK9 mRNA expression to that of VLDLR in mouse postnatal day 1 cerebellum. Thus, this study demonstrates a more general effect of PCSK9 on the degradation of the LDLR family that emphasizes its major role in cholesterol and lipid homeostasis as well as brain development.
[6]
Shapiro MD, Tavori H, Fazio S. PCSK9: from basic science discoveries to clinical trials[J]. Circ Res, 2018, 122(10): 1420-1438. DOI: 10.1161/CIRCRESAHA.118.311227.
Unknown 15 years ago, PCSK9 (proprotein convertase subtilisin/kexin type 9) is now common parlance among scientists and clinicians interested in prevention and treatment of atherosclerotic cardiovascular disease. What makes this story so special is not its recent discovery nor the fact that it uncovered previously unknown biology but rather that these important scientific insights have been translated into an effective medical therapy in record time. Indeed, the translation of this discovery to novel therapeutic serves as one of the best examples of how genetic insights can be leveraged into intelligent target drug discovery. The PCSK9 saga is unfolding quickly but is far from complete. Here, we review major scientific understandings as they relate to the role of PCSK9 in lipoprotein metabolism and atherosclerotic cardiovascular disease and the impact that therapies designed to inhibit its action are having in the clinical setting.© 2018 American Heart Association, Inc.
[7]
Ferri N, Tibolla G, Pirillo A, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels[J]. Atherosclerosis, 2012, 220(2): 381-386. DOI: 10.1016/j.atherosclerosis.2011.11.026.
Proprotein convertase subtilisin kexin type 9 (PCSK9) is an important regulator of hepatic low-density lipoprotein (LDL)-cholesterol levels. Although PCSK9 is mainly of hepatic origin, extra-hepatic tissues significantly contribute to PCSK9 production and, potentially, local regulation of LDL receptor expression.In the present study we show that, among vascular cells, PCSK9 is expressed in smooth muscle cells (SMCs) but not in endothelial cells, macrophages and monocytes. PCSK9 was also detectable in human atherosclerotic plaques. Conditioned media from SMCs significantly reduced LDLR expression in human macrophage and in the macrophage cell line J774. Co-culture experiments also demonstrated the influence of SMCs on LDLR expression in J774. PCSK9 released from SMCs directly regulated LDLR expression in macrophages as demonstrated by retroviral overexpression or knockdown of PCSK9 with small interfering RNA and by using recombinant PCSK9. Moreover, the proteolytic activity of PCSK9 was not required for LDLR downregulation since cultured media containing either the catalytic inactive PCSK9 or PCSK9 WT had a similar effect on LDLR in J774. Finally, conditioned media from SMCs affected β-VLDL cholesterol uptake and PCSK9 expression reduced both LDLR and LDL uptake in J774.Taken together our data indicate that PCSK9 secreted by human SMCs is functionally active and capable of reducing LDLR expression in macrophages. A possible direct role for this protein in foam cell formation and atherogenesis is suggested.Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
[8]
Mbikay M, Sirois F, Mayne J, et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities[J]. FEBS Lett, 2010, 584(4): 701-706. DOI: 10.1016/j.febslet.2009.12.018.
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a liver-secreted plasma enzyme, restricts hepatic uptake of low-density lipoprotein (LDL) cholesterol by promoting the degradation of LDL receptors (LDLR). PCSK9 and LDLR are also expressed in insulin-producing pancreatic islet beta cells, possibly affecting the function of these cells. Here we show that, compared to control mice, PCSK9-null male mice over 4 months of age carried more LDLR and less insulin in their pancreas; they were hypoinsulinemic, hyperglycemic and glucose-intolerant; their islets exhibited signs of malformation, apoptosis and inflammation. Collectively, these observations suggest that PCSK9 may be necessary for the normal function of pancreatic islets.Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
[9]
吴美延, 臧崇森, 马福哲, 等. PCSK9对C57BL/6小鼠肾组织脂质平衡及损伤的作用[J]. 中华肾脏病杂志, 2018, 34(11): 845-850. DOI: 10.3760/cma.j.issn.1001-7097.2018.11.007.
目的 评估PCSK9(proprotein convertase subtilisin kexin type 9)对C57BL/6小鼠肾脏组织脂质平衡的影响以及损伤作用。 方法 12周龄的C57BL/6野生型小鼠和系统性敲除PCSK9基因小鼠通过代谢笼收集24 h尿,经心全身灌注,取出肾脏。采用ELISA方法检测尿微量白蛋白、血尿肌酐、血总胆固醇、肾组织内总胆固醇和甘油三酯水平,BODIPY 493/503染色,透射电镜(TEM)观察肾组织内脂质蓄积;PAS染色、TUNNEL染色以及qPCR和Western印迹法评估肾组织损伤及细胞凋亡。 结果 与C57BL/6野生型对照组相比,PCSK9 KO组肾组织内总胆固醇及甘油三酯水平升高(均P<0.05),BODIPY 493/503染色显示肾小球及肾小管细胞内脂质染色明显加深,TEM提示肾小管细胞内脂滴数目显著增多。系统性敲除PCSK9基因小鼠较C57BL/6野生型对照组尿微量白蛋白/尿肌酐升高(P<0.05),Podocin和Nephrin的转录水平下降(均P<0.05),TEM可见肾小球内足细胞足突变短、不同程度的融合。与野生型对照组相比,PCSK9 KO组小鼠肾组织内Bax和Cleaved Caspase 3表达升高,Bcl-2表达下降(均P<0.05)。 结论 PCSK9表达下降增加肾组织细胞内脂质蓄积,继而诱导肾固有细胞的损伤和凋亡。
[10]
朱雪玲, 曹英杰, 刘静, 等. EP1受体通过激活p38 MAPK通路介导阿霉素诱导的足细胞损伤[J]. 中华肾脏病杂志, 2018, 34(7): 539-549. DOI: 10.3760/cma.j.issn.1001-7097.2018.07.010.
目的 探讨前列腺素E2受体1亚型(EP1)在阿霉素(ADR)诱导的足细胞损伤中的作用及其可能机制。 方法 (1)动物实验:6~8周龄雄性Balb/c小鼠被随机分为4组:对照组;ADR组;EP1激动剂(17-phenyl PGE2)+ADR组;EP1拮抗剂(SC-19220)+ADR组。尾静脉注射ADR(10 mg/kg)构建小鼠肾病综合征模型,分别给予EP1激动剂(1 μg/g)和拮抗剂(25 μg/g)。检测小鼠尿蛋白量、血生化、肾脏病理改变、电镜下足细胞改变以及足细胞相关蛋白的表达变化。(2)细胞实验:体外培养足细胞,分为4组:对照组;ADR组;EP1激动剂+ADR组;EP1拮抗剂+ADR组。CCK-8法检测足细胞增殖情况;ELISA 法检测足细胞前列腺素E2(PGE2)含量;间接免疫荧光法检测足细胞相关蛋白nephrin、podocin、CD2AP在足细胞中的定位;实时定量PCR法及Western 印迹法检测足细胞相关蛋白mRNA 及蛋白的表达;Western 印迹法检测p38 MAPK活性变化;流式细胞术检测细胞凋亡。 结果 (1)动物实验结果:与对照组相比,ADR组小鼠出现明显蛋白尿、血生化及肾脏病理改变;与ADR组相比,EP1激动剂+ADR组尿蛋白量增多、血生化异常及肾脏病理改变加重,拮抗剂+ADR组上述改变减轻。免疫组化结果显示,ADR组足细胞相关蛋白nephrin、podocin、CD2AP表达与对照组相比显著降低,EP1激动剂可进一步抑制其表达,拮抗剂干预后上述改变得到改善(均P<0.05)。电镜下观察ADR组足细胞足突增宽、融合,激动剂组足细胞损伤进一步加重,拮抗剂干预后足细胞损伤减轻。(2)细胞实验结果:与对照组相比,ADR组足细胞中PGE2含量、环氧合酶 2(COX2)mRNA及蛋白表达增加,nephrin、podocin、CD2AP mRNA及蛋白表达下降,p38 MAPK活性增加,足细胞凋亡显著增多(均P<0.05)。EP1激动剂干预后上述改变加重(均P<0.05);拮抗剂可下调PGE2及COX2 mRNA及蛋白的表达,上调nephrin、podocin、CD2AP mRNA及蛋白表达,抑制p38 MAPK活性,抑制足细胞凋亡(均P<0.05)。加入p38 MAPK抑制剂(10 μmol/L)可以减轻EP1激动剂对足细胞相关蛋白nephrin、podocin、CD2AP表达的抑制作用。 结论 EP1受体可能通过激活p38 MAPK信号通路抑制足细胞相关蛋白nephrin、podocin、CD2AP的表达,介导ADR诱导的足细胞损伤,抑制EP1受体对足细胞有保护作用。
[11]
Huber TB, Schermer B, Müller RU, et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels[J]. Proc Natl Acad Sci U S A, 2006, 103(46): 17079-17086. DOI: 10.1073/pnas.0607465103.
\n The prohibitin (PHB)-domain proteins are membrane proteins that regulate a variety of biological activities, including mechanosensation, osmotic homeostasis, and cell signaling, although the mechanism of this regulation is unknown. We have studied two members of this large protein family, MEC-2, which is needed for touch sensitivity in\n Caenorhabditis elegans\n, and Podocin, a protein involved in the function of the filtration barrier in the mammalian kidney, and find that both proteins bind cholesterol. This binding requires the PHB domain (including palmitoylation sites within it) and part of the N-terminally adjacent hydrophobic domain that attaches the proteins to the inner leaflet of the plasma membrane. By binding to MEC-2 and Podocin, cholesterol associates with ion-channel complexes to which these proteins bind: DEG/ENaC channels for MEC-2 and TRPC channels for Podocin. Both the MEC-2-dependent activation of mechanosensation and the Podocin-dependent activation of TRPC channels require cholesterol. Thus, MEC-2, Podocin, and probably many other PHB-domain proteins by binding to themselves, cholesterol, and target proteins regulate the formation and function of large protein–cholesterol supercomplexes in the plasma membrane.\n
[12]
Schermer B, Benzing T. Lipid-protein interactions along the slit diaphragm of podocytes[J]. J Am Soc Nephrol, 2009, 20(3): 473-478. DOI: 10.1681/ASN.2008070694.
Podocytes are visceral epithelial cells supporting the function of the glomerular filter. Interdigitating foot processes of podocytes enwrap the glomerular capillaries and are connected by a highly specialized cell junction, the slit diaphragm. Signal transduction at the slit diaphragm is essential for the proper function of the kidney filtration barrier. The slit diaphragm constitutes a dynamic multiprotein signaling complex that contains structural proteins, receptors, signaling adaptors, ion channels, and scaffolding proteins. Function of some of these proteins requires cholesterol attached to the multiprotein complex. Recruitment of cholesterol is achieved through the PHB domain protein podocin, a member of a novel family of lipid-binding proteins that are conserved through evolution. The finding that cholesterol interaction regulates the activity of ion channels at the glomerular filtration barrier has important implications for renal physiology and pathophysiology.
[13]
Merscher-Gomez S, Guzman J, Pedigo CE, et al. Cyclodextrin protects podocytes in diabetic kidney disease[J]. Diabetes, 2013, 62(11): 3817-3827. DOI: 10.2337/db13-0399.
Diabetic kidney disease (DKD) remains the most common cause of end-stage kidney disease despite multifactorial intervention. We demonstrated that increased cholesterol in association with downregulation of ATP-binding cassette transporter ABCA1 occurs in normal human podocytes exposed to the sera of patients with type 1 diabetes and albuminuria (DKD(+)) when compared with diabetic patients with normoalbuminuria (DKD(-)) and similar duration of diabetes and lipid profile. Glomerular downregulation of ABCA1 was confirmed in biopsies from patients with early DKD (n = 70) when compared with normal living donors (n = 32). Induction of cholesterol efflux with cyclodextrin (CD) but not inhibition of cholesterol synthesis with simvastatin prevented podocyte injury observed in vitro after exposure to patient sera. Subcutaneous administration of CD to diabetic BTBR (black and tan, brachiuric) ob/ob mice was safe and reduced albuminuria, mesangial expansion, kidney weight, and cortical cholesterol content. This was followed by an improvement of fasting insulin, blood glucose, body weight, and glucose tolerance in vivo and improved glucose-stimulated insulin release in human islets in vitro. Our data suggest that impaired reverse cholesterol transport characterizes clinical and experimental DKD and negatively influences podocyte function. Treatment with CD is safe and effective in preserving podocyte function in vitro and in vivo and may improve the metabolic control of diabetes.
[14]
Mbikay M, Mayne J, Sirois F, et al. Mice fed a high-cholesterol diet supplemented with quercetin-3-glucoside show attenuated hyperlipidemia and hyperinsulinemia associated with differential regulation of PCSK9 and LDLR in their liver and pancreas[J]. Mol Nutr Food Res, 2018, 62(9): e1700729. DOI: 10.1002/mnfr.201700729.
[15]
Ferri N, Tibolla G, Pirillo A, et al. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels[J]. Atherosclerosis, 2012, 220(2): 381-386. DOI: 10.1016/j.atherosclerosis.2011.11.026.
Proprotein convertase subtilisin kexin type 9 (PCSK9) is an important regulator of hepatic low-density lipoprotein (LDL)-cholesterol levels. Although PCSK9 is mainly of hepatic origin, extra-hepatic tissues significantly contribute to PCSK9 production and, potentially, local regulation of LDL receptor expression.In the present study we show that, among vascular cells, PCSK9 is expressed in smooth muscle cells (SMCs) but not in endothelial cells, macrophages and monocytes. PCSK9 was also detectable in human atherosclerotic plaques. Conditioned media from SMCs significantly reduced LDLR expression in human macrophage and in the macrophage cell line J774. Co-culture experiments also demonstrated the influence of SMCs on LDLR expression in J774. PCSK9 released from SMCs directly regulated LDLR expression in macrophages as demonstrated by retroviral overexpression or knockdown of PCSK9 with small interfering RNA and by using recombinant PCSK9. Moreover, the proteolytic activity of PCSK9 was not required for LDLR downregulation since cultured media containing either the catalytic inactive PCSK9 or PCSK9 WT had a similar effect on LDLR in J774. Finally, conditioned media from SMCs affected β-VLDL cholesterol uptake and PCSK9 expression reduced both LDLR and LDL uptake in J774.Taken together our data indicate that PCSK9 secreted by human SMCs is functionally active and capable of reducing LDLR expression in macrophages. A possible direct role for this protein in foam cell formation and atherogenesis is suggested.Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
[16]
Proctor G, Jiang T, Iwahashi M, et al. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes[J]. Diabetes, 2006, 55(9): 2502-2509. DOI: 10.2337/db05-0603.
In Akita and OVE26 mice, two genetic models of type 1 diabetes, diabetic nephropathy is characterized by mesangial expansion and loss of podocytes, resulting in glomerulosclerosis and proteinuria, and is associated with increased expression of profibrotic growth factors, proinflammatory cytokines, and increased oxidative stress. We have also found significant increases in renal triglyceride and cholesterol content. The increase in renal triglyceride content is associated with 1) increased expression of sterol regulatory element-binding protein (SREBP)-1c and carbohydrate response element-binding protein (ChREBP), which collectively results in increased fatty acid synthesis, 2) decreased expression of peroxisome proliferator-activated receptor (PPAR)-alpha and -delta, which results in decreased fatty acid oxidation, and 3) decreased expression of farnesoid X receptor (FXR) and small heterodimer partner (SHP). The increase in cholesterol content is associated with 1) increased expression of SREBP-2 and 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, which results in increased cholesterol synthesis, and 2) decreased expression of liver X receptor (LXR)-alpha, LXR-beta, and ATP-binding cassette transporter-1, which results in decreased cholesterol efflux. Our results indicate that in type 1 diabetes, there is altered renal lipid metabolism favoring net accumulation of triglycerides and cholesterol, which are driven by increases in SREBP-1, ChREBP, and SREBP-2 and decreases in FXR, LXR-alpha, and LXR-beta, which may also play a role in the increased expression of profibrotic growth hormones, proinflammatory cytokines, and oxidative stress.
[17]
Herman-Edelstein M, Scherzer P, Tobar A, et al. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy[J]. J Lipid Res, 2014, 55(3): 561-572. DOI: 10.1194/jlr.P040501.
Animal models link ectopic lipid accumulation to renal dysfunction, but whether this process occurs in the human kidney is uncertain. To this end, we investigated whether altered renal TG and cholesterol metabolism results in lipid accumulation in human diabetic nephropathy (DN). Lipid staining and the expression of lipid metabolism genes were studied in kidney biopsies of patients with diagnosed DN (n = 34), and compared with normal kidneys (n = 12). We observed heavy lipid deposition and increased intracellular lipid droplets. Lipid deposition was associated with dysregulation of lipid metabolism genes. Fatty acid β-oxidation pathways including PPAR-α, carnitine palmitoyltransferase 1, acyl-CoA oxidase, and L-FABP were downregulated. Downregulation of renal lipoprotein lipase, which hydrolyzes circulating TGs, was associated with increased expression of angiopoietin-like protein 4. Cholesterol uptake receptor expression, including LDL receptors, oxidized LDL receptors, and acetylated LDL receptors, was significantly increased, while there was downregulation of genes effecting cholesterol efflux, including ABCA1, ABCG1, and apoE. There was a highly significant correlation between glomerular filtration rate, inflammation, and lipid metabolism genes, supporting a possible role of abnormal lipid metabolism in the pathogenesis of DN. These data suggest that renal lipid metabolism may serve as a target for specific therapies aimed at slowing the progression of glomerulosclerosis.
[18]
Szeto HH, Liu S, Soong Y, et al. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury[J]. Kidney Int, 2016, 90(5): 997-1011. DOI: 10.1016/j.kint.2016.06.013.
[19]
Weinberg JM. Lipotoxicity[J]. Kidney Int, 2006, 70(9): 1560-1566. DOI: 10.1038/sj.ki.5001834.
Excess fatty acids accompanied by triglyceride accumulation in parenchymal cells of multiple tissues including skeletal and cardiac myocytes, hepatocytes, and pancreatic beta cells results in chronic cellular dysfunction and injury. The process, now termed lipotoxicity, can account for many manifestations of the 'metabolic syndrome'. Most data suggest that the triglycerides serve primarily a storage function with toxicity deriving mainly from long-chain nonesterified fatty acids (NEFA) and their products such as ceramides and diacylglycerols. In the kidney, filtered NEFA carried on albumin can aggravate the chronic tubule damage and inflammatory phenotype that develop during proteinuric states and lipid loading of both glomerular and tubular cells is a common response to renal injury that contributes to progression of nephropathy. NEFA-induced mitochondrial dysfunction is the primary mechanism for energetic failure of proximal tubules during hypoxia/reoxygenation and persistent increases of tubule cell NEFA and triglycerides occur during acute renal failure in vivo in association with downregulation of mitochondrial and peroxisomal enzymes of beta oxidation. In acute renal failure models, peroxisome proliferator-activated receptor alpha ligand treatment can ameliorate the NEFA and triglyceride accumulation and limits tissue injury likely via both direct tubule actions and anti-inflammatory effects. Both acute and chronic kidney disease are associated with systemic manifestations of the metabolic syndrome.
[20]
Opazo-Ríos L, Mas S, Marín-Royo G, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities[J]. Int J Mol Sci, 2020, 21(7): 2632. DOI: 10.3390/ijms21072632.
Lipotoxicity is characterized by the ectopic accumulation of lipids in organs different from adipose tissue. Lipotoxicity is mainly associated with dysfunctional signaling and insulin resistance response in non-adipose tissue such as myocardium, pancreas, skeletal muscle, liver, and kidney. Serum lipid abnormalities and renal ectopic lipid accumulation have been associated with the development of kidney diseases, in particular diabetic nephropathy. Chronic hyperinsulinemia, often seen in type 2 diabetes, plays a crucial role in blood and liver lipid metabolism abnormalities, thus resulting in increased non-esterified fatty acids (NEFA). Excessive lipid accumulation alters cellular homeostasis and activates lipogenic and glycogenic cell-signaling pathways. Recent evidences indicate that both quantity and quality of lipids are involved in renal damage associated to lipotoxicity by activating inflammation, oxidative stress, mitochondrial dysfunction, and cell-death. The pathological effects of lipotoxicity have been observed in renal cells, thus promoting podocyte injury, tubular damage, mesangial proliferation, endothelial activation, and formation of macrophage-derived foam cells. Therefore, this review examines the recent preclinical and clinical research about the potentially harmful effects of lipids in the kidney, metabolic markers associated with these mechanisms, major signaling pathways affected, the causes of excessive lipid accumulation, and the types of lipids involved, as well as offers a comprehensive update of therapeutic strategies targeting lipotoxicity.
[21]
Chen Y, Feng X, Hu X, et al. Dexmedetomidine ameliorates acute stress-induced kidney injury by attenuating oxidative stress and apoptosis through inhibition of the ROS/JNK signaling pathway[J]. Oxid Med Cell Longev, 2018, 2018: 4035310. DOI: 10.1155/2018/4035310.

利益冲突

所有作者均声明不存在利益冲突

基金

国家自然科学基金青年科学基金项目(82000689)
国家自然科学基金面上项目(81974094)
吉林省教育厅“十三五”科学研究规划项目(JJKH20201066K)
中华医学会临床医学科研专项资金-施维雅肾脏病研究与发展项目(20010090801)
吉林省医疗卫生人才专项项目(JLSCZD2019-066)
PDF(3750 KB)

1296

Accesses

0

Citation

Detail

段落导航
相关文章

/