苦参碱调控Snail2表达水平抑制转化生长因子β1诱导的人腹膜间皮细胞上皮间充质转分化

李福记, 霍冬梅, 梁靖梅, 段秀萍, 廖蕴华

PDF(4347 KB)
中华肾脏病杂志 ›› 2020, Vol. 36 ›› Issue (3) : 221-226. DOI: 10.3760/cma.j.cn441217-20191016-00043
基础研究

苦参碱调控Snail2表达水平抑制转化生长因子β1诱导的人腹膜间皮细胞上皮间充质转分化

作者信息 +

Matrine inhibits transforming growth factor-β1-induced epithelial mesenchymal transdifferentiation in human peritoneal mesothelial cells by regulating the expression of Snail2

Author information +
History +

摘要

目的 研究苦参碱对转化生长因子β1(TGF-β1)诱导腹膜间皮细胞上皮间充质转分化(EMT)后转录因子Snail2的影响。 方法 采用TGF-β1刺激人腹膜间皮细胞并同时予不同浓度苦参碱干预处理,实验分为空白对照组、TGF-β1(5 ng/ml)诱导组、TGF-β1+0.4 mg/ml苦参碱干预组、TGF-β1+0.6 mg/ml苦参碱干预组、TGF-β1+0.8 mg/ml苦参碱干预组和 TGF-β1+1.0 mg/ml苦参碱干预组。实时荧光定量PCR和Western印迹检测Snail2、上皮标志分子E钙黏蛋白(E-cadherin)和间质标志分子α平滑肌肌动蛋白(α-SMA)、纤维连接蛋白(FN)、胶原Ⅲ(ColⅢ)的表达,Western印迹检测Smad2、Smad3和细胞外调节蛋白激酶1/2(ERK1/2)的蛋白磷酸化水平。 结果 TGF-β1(5 ng/ml)刺激能上调人腹膜间皮细胞Snail2、 α-SMA、FN和ColⅢ mRNA和蛋白的表达水平,上调Smad2、Smad3和ERK1/2的蛋白磷酸化水平,下调E-cadherin mRNA和蛋白的表达水平;苦参碱(0.4、0.6、0.8、1.0 mg/ml)干预处理后能下调Snail2和α-SMA、FN和ColⅢ mRNA和蛋白的表达水平以及ERK1/2的蛋白磷酸化水平,上调 E-cadherin mRNA和蛋白的表达水平。 结论 TGF-β1能诱导人腹膜间皮细胞EMT,苦参碱可能通过ERK1/2信号通路下调Snail2的表达水平来抑制TGF-β1诱导的人腹膜间皮细胞EMT。

Abstract

Objective To study the effect of matrine on the expression of transcription factor Snail2 in peritoneal mesothelial cells epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1). Methods Human peritoneal mesothelial cells were stimulated by TGF-β1 and treated with matrine. The experiment was divided into six groups (control group, TGF-β1-induced group (5 ng/ml), TGF-β1+0.4 mg/ml matrine intervention group, TGF-β1+0.6 mg/ml matrine intervention group, TGF-β1+0.8 mg/ml matrine intervention group and TGF-β1+1.0 mg/ml matrine intervention group). The expressions of Snail2, E-cadherin, α-smooth muscle actin (α-SMA), Fibronectin and collagen (Col)Ⅲ were detected by real-time fluorescence quantitative PCR and Western blotting. The protein phosphorylation levels of Smad2, Smad3 and extracellular signal-regulated kinase (ERK)1/2 were detected by Western blotting. Results The mRNA and protein expressions of Snail2, α-SMA, Fibronectin and ColⅢ were up-regulated after being stimulated by TGF-β1 (5 ng/ml) in human peritoneal mesothelial cells, while the mRNA and protein expression of E-cadherin was down-regulated. TGF-β1 (5 ng/ml) could up-regulate the protein phosphorylation levels of Smad2, Smad3 and ERK1/2. Matrine (0.4, 0.6, 0.8, 1.0 mg/ml) could down-regulate the mRNA and protein expression levels of Snail2, α-SMA, Fibronectin and ColⅢ after being stimulated by TGF-β1 in human peritoneal mesothelial cells. Matrine could down-regulate the protein phosphorylation of ERK1/2, and up-regulate the mRNA and protein expression levels of E-cadherin with treatment of TGF-β1 in human peritoneal mesothelial cells. Conclusions TGF-β1 can induce EMT of human peritoneal mesothelial cells. Matrine may inhibit TGF-β1-induced EMT of human peritoneal mesothelial cells by down-regulating the expression of Snail2 through the ERK1/2 signaling pathway.

关键词

苦参碱 / 转化生长因子β1 / 腹膜 / Snail2 / 上皮细胞间充质转分化

Key words

Matrine / Transforming growth factor beta 1 / Peritoneum / Snail2 / Epithelial-mesenchymal transition

编辑

彭苗、杨克魁

引用本文

导出引用
李福记 , 霍冬梅 , 梁靖梅 , 段秀萍 , 廖蕴华. 苦参碱调控Snail2表达水平抑制转化生长因子β1诱导的人腹膜间皮细胞上皮间充质转分化[J]. 中华肾脏病杂志, 2020, 36(3): 221-226. DOI: 10.3760/cma.j.cn441217-20191016-00043.
Li Fuji , Huo Dongmei , Liang Jingmei , Duan Xiuping , Liao Yunhua. Matrine inhibits transforming growth factor-β1-induced epithelial mesenchymal transdifferentiation in human peritoneal mesothelial cells by regulating the expression of Snail2[J]. Chinese Journal of Nephrology, 2020, 36(3): 221-226. DOI: 10.3760/cma.j.cn441217-20191016-00043.
腹膜透析是终末期肾病(end-stage renal disease,ESRD)患者的重要替代疗法之一[1-3],长期的腹膜透析过程中腹膜形态及功能会逐渐发生改变[4],并最终走向腹膜纤维化,腹膜超滤量下降,使得患者无法再利用腹膜透析进行肾脏替代治疗[5]。因此,抑制腹膜纤维化对延长ESRD患者的腹膜透析时间尤为重要[6]。腹膜透析液相关腹膜纤维化发生发展的早期重要过程是出现腹膜间皮细胞上皮间充质转分化(EMT)。研究表明,转化生长因子β1(TGF-β1)能诱导腹膜间皮细胞EMT[7],TGF-β1被认为是导致腹膜纤维化最主要的因子之一[8]。在动物模型中注射携带TGF-β1的腺病毒引起的腹膜纤维化与暴露于腹膜透析液导致的腹膜纤维化相似[9]。苦参碱在肝、肺和心脏等器官纤维化中具有重要的抗纤维化作用[10-12],也有研究报道苦参碱对腹膜纤维化具有防治作用[13],但苦参碱对人腹膜间皮细胞EMT的潜在作用及具体的分子机制并未见相关研究报道。本研究探讨苦参碱对TGF-β1诱导的人腹膜间皮细胞EMT作用的分子机制,为寻求有效抑制腹膜间皮细胞EMT的新方法提供科学依据。

材料与方法

1. 材料: 人腹膜间皮细胞系(HPMC)购买于广州吉赛科技有限公司,苦参碱购于北京博奥拓达科技有限公司(CAS NO:16837-52-8),TGF-β1购于美国MCE公司,Snail2、α平滑肌肌动蛋白(α-SMA)、E钙黏蛋白(E-cadherin)、纤维连接蛋白(FN)、胶原Ⅲ(ColⅢ)、Smad2、Smad3和细胞外调节蛋白激酶(ERK)单克隆抗体以及磷酸化抗体p-Smad2、p-Smad3、p-ERK1/2均购于美国CST公司。
2. 人腹膜间皮细胞培养及药物干预: 复苏细胞并传代培养,待细胞长至80%融合时胰酶消化,完全培养基终止消化后,采用血细胞计数板进行细胞计数,调整细胞密度约5×104/ml接种于6孔板中培养,待细胞长至70%~80%时进行干预实验。诱导人腹膜间皮细胞EMT的TGF-β1浓度为5 ng/ml,苦参碱干预处理的浓度分别为0.4、0.6、0.8、1.0 mg/ml。实验分为空白对照组、TGF-β1诱导组、TGF-β1+0.4 mg/ml苦参碱干预组、TGF-β1+0.6 mg/ml苦参碱干预组、TGF-β1+0.8 mg/ml苦参碱干预组和TGF-β1+1.0 mg/ml苦参碱干预组。
3. 细胞活力的测定方法: 将人腹膜间皮细胞铺于96孔板,12 h细胞贴壁后,分别予0.4、0.6、0.8、1.0 mg/ml苦参碱干预处理48 h后,更换培养基,按CCK-8试剂盒说明书检测细胞存活率,每组6个重复孔,以空白对照组为参照,计算不同浓度苦参碱对人腹膜间皮细胞活力的影响。
4. 实时荧光定量PCR: 细胞干预处理48 h后收集细胞,根据天根RNA提取试剂盒说明书提取细胞总RNA,紫外分光光度计测量RNA浓度与纯度,琼脂糖凝胶电泳验证完整性后,根据Takara反转录试剂盒说明书合成单链cDNA,以cDNA为模板在ABI 7500实时荧光定量PCR仪上扩增目的片段。反应体系为:10 μl SYBR Premix Ex TaqⅡ、0.8 μl上游引物、0.8 μl下游引物、0.4 μl ROX Reference Dye or DyeⅡ、2 μl cDNA和6 μl灭菌蒸馏水。反应条件为:预变性95℃ 30 s,变性95℃ 5 s,退火和延伸60℃ 34 s,共40个循环。扩增引物在Pubmed数据库中在线设计,由上海生物工程股份有限公司进行合成,序列见表1
表1 实时荧光定量PCR扩增引物序列
引物名称 引物序列
β-actin(内参)
上游引物AGGATTCCTATGTGGGCGAC
下游引物CGTACAGGGATAGCACAGCCT
Snail2
上游引物GCCAAACTACAGCGAACTGG
下游引物GAGAGAGGCCATTGGGTAGC
E钙黏蛋白
上游引物TGAGGTCTCTCTCACCACCT
下游引物TAGGGCTGTGTACGTGCTGT
α平滑肌肌动蛋白
上游引物GGCAAGTGATCACCATCGGA
下游引物GTGGTTTCATGGATGCCAGC
纤维连接蛋白
上游引物CACCTCTGTGCAGACCACAT
下游引物AGTTGCCACCGTAAGTCTGG
胶原Ⅲ
上游引物GCTGGCATCAAAGGACATCG
下游引物TCTCTGCAGTTTCTAGCGGG
5. Western印迹: 细胞干预处理48 h后收集细胞,提取总蛋白,聚丙烯酰胺凝胶电泳后转聚偏氟乙烯(PVDF)膜,抗原封闭1 h后,4℃孵育一抗(Snail2、α-SMA、E-cadherin、FN、ColⅢ、Smad2、Smad3、ERK、p-Smad2、p-Smad3、p-ERK1/2)过夜,一抗使用浓度均为1∶1 000,二抗孵育1 h,全能型凝胶成像系统成像。
6. 统计学方法: 数据分析采用SPSS 20.0统计学软件,符合正态分布的计量资料采用x¯±s表示,两组间比较采用独立样本t检验,多组间比较采用单因素方差分析。柱状图采用GraphPad Prism 5.0进行绘制。P<0.05视为差异有统计学意义。

结果

1. 苦参碱对人腹膜间皮细胞E-cadherin、 α-SMA、FN和ColⅢ mRNA表达水平的影响: 暴露于不同浓度苦参碱(0.4、0.6、0.8、1.0 mg/ml)48 h后的人腹膜间皮细胞吸光度值与对照组的差异均无统计学意义(均P>0.05),0.4、0.6、0.8、1.0 mg/ml浓度的苦参碱人腹膜间皮细胞生长活性无明显影响,见图1
图1 不同浓度苦参碱对E-cadherin、α-SMA、FN和ColⅢ mRNA表达水平的影响(实时荧光定量PCR)
注:1:空白对照组;2:TGF-β1(5 ng/ml)诱导组;3:TGF-β1+0.4 mg/ml苦参碱干预组;4:TGF-β1+0.6 mg/ml苦参碱干预组;5:TGF-β1+0.8 mg/ml苦参碱干预组;6:TGF-β1+1.0 mg/ml苦参碱干预组;E-cadherin:E钙黏蛋白;α-SMA:α平滑肌肌动蛋白;FN:纤维连接蛋白;ColⅢ:胶原Ⅲ;与空白对照组比较,aP<0.05;与TGF-β1诱导组比较,bP<0.05,cP<0.01

Full size|PPT slide

TGF-β1(5 ng/ml)诱导人腹膜间皮细胞48 h后发现E-cadherin的mRNA表达下调,而α-SMA、FN和ColⅢ的mRNA表达上调,见图1
TGF-β1(5 ng/ml)诱导人腹膜间皮细胞并同时给予不同浓度苦参碱干预处理,发现其能上调E-cadherin的mRNA表达水平,下调α-SMA、FN和ColⅢ的mRNA表达水平,其中0.8 mg/ml苦参碱和1.0 mg/ml苦参碱的作用较为显著(均P<0.05),见图1
2. 苦参碱对人腹膜间皮细胞E-cadherin、 α-SMA、FN和ColⅢ的蛋白表达水平的影响: 给予5 ng/ml TGF-β1诱导人腹膜间皮细胞48 h后发现, E-cadherin的蛋白表达下调,而α-SMA、FN和ColⅢ的蛋白表达上调,差异有统计学意义(均P<0.05),见图2
图2 苦参碱对E-cadherin、α-SMA、FN和Col Ⅲ的蛋白表达水平的影响(Western印迹)
注:1:空白对照组;2:TGF-β1(5 ng/ml)诱导组;3:TGF-β1+0.4 mg/ml苦参碱干预组;4:TGF-β1+0.6 mg/ml苦参碱干预组;5:TGF-β1+0.8 mg/ml苦参碱干预组;6:TGF-β1+1.0 mg/ml苦参碱干预组;E-cadherin:E钙黏蛋白;α-SMA:α平滑肌肌动蛋白;FN:纤维连接蛋白;ColⅢ:胶原Ⅲ;与对照组比较,aP<0.05;与TGF-β1诱导组比较,bP<0.05,cP<0.01

Full size|PPT slide

给予5 ng/ml TGF-β1诱导人腹膜间皮细胞并同时给予不同浓度苦参碱干预处理48 h后,发现苦参碱能上调E-cadherin的蛋白表达水平以及下调α-SMA、FN和ColⅢ的蛋白表达水平,其中0.8 mg/ml苦参碱和1.0 mg/ml苦参碱的作用较为显著(均P<0.05),见图2
3. 苦参碱对TGF-β1诱导的人腹膜间皮细胞EMT形态学的影响: 根据不同浓度苦参碱对 E-cadherin、α-SMA、FN和ColⅢ mRNA和蛋白表达的结果,选取0.8 mg/ml苦参碱处理细胞并观察其对TGF-β1诱导的人腹膜间皮细胞EMT形态学的影响。空白对照组的细胞为“鹅卵石样”紧密排列生长;TGF-β1诱导组的细胞在作用48 h后细胞基本呈长梭形,且细胞间隙增大;而与空白对照组比较,TGF-β1+0.8 mg/ml苦参碱处理组的细胞形态无明显改变,见图3
图3 苦参碱对转化生长因子β1(TGF-β1)诱导的人腹膜间皮细胞上皮间充质转分化形态学的影响(光镜 ×100)
注:1:空白对照组;2:TGF-β1(5 ng/ml)诱导组;3:TGF-β1+苦参碱(0.8 mg/ml)干预组

Full size|PPT slide

4. 苦参碱对Smad2、Smad3和ERK1/2蛋白磷酸化水平的影响: 予5 ng/ml TGF-β1诱导人腹膜间皮细胞48 h后发现Smad2、Smad3和ERK1/2蛋白磷酸化水平显著上调;予5 ng/ml TGF-β1刺激并同时给予0.8 mg/ml苦参碱干预人腹膜间皮细胞48 h后发现,苦参碱对Smad2、Smad3蛋白磷酸化水平无明显影响,但其能显著下调ERK1/2蛋白磷酸化水平,见图4
图4 苦参碱(0.8 mg/ml)对Smad2、Smad3和ERK1/2蛋白磷酸化水平的影响(Western印迹)
注:1:空白对照组;2:TGF-β1(5 ng/ml)诱导组;3:TGF-β1+苦参碱干预组;与对照组比较,aP<0.05;与TGF-β1诱导组比较,bP<0.01

Full size|PPT slide

5. 苦参碱下调TGF-β1诱导后人腹膜间皮细胞Snail2的表达: 予5 ng/ml TGF-β1诱导人腹膜间皮细胞48 h后发现,Snail2的mRNA和蛋白表达均显著上调。予5 ng/ml TGF-β1刺激并同时给予0.8 mg/ml苦参碱干预处理能显著下调Snail2的mRNA和蛋白表达水平,见图5
图5 苦参碱(0.8 mg/ml)对Snail2 mRNA和蛋白表达水平的影响
注:1:空白对照组;2:TGF-β1(5 ng/ml)诱导组;3:TGF-β1+苦参碱干预组;A:Snail2 mRNA表达水平(实时定量PCR);B:Snail2蛋白表达水平(Western印迹);与对照组比较,aP<0.05;与TGF-β1诱导组比较,bP<0.01

Full size|PPT slide

讨论

腹膜间皮细胞EMT在腹膜透析液引起的腹膜纤维化中起着至关重要的作用[14],然而目前临床上并无有效药物能抑制腹膜间皮细胞EMT。研究表明,EMT是由TGF-β、纤维生长因子、表皮生长因子、Wnt/β-catenin和其他一些信号通路共同参与的一个复杂生物过程,主要特征是上皮标志分子(如E-cadherin等)表达下调,而间质标志分子(如α-SMA、FN和ColⅢ等)表达上调[15]。Strippoli等[8]认为TGF-β1是导致腹膜纤维化的关键因子之一,Margetts等[9]研究发现TGF-β1诱导的腹膜纤维化与腹膜透析液引起的纤维化相似,并且Wu等[4]在检测腹膜透析患者透析前后腹膜组织中TGF-β1表达时发现透析后其表达水平显著升高。这些研究结果提示 TGF-β1与腹膜纤维化的发生与发展密切相关。另外,Patel等[7]研究发现TGF-β1能诱导小鼠腹膜间皮细胞EMT。本研究也通过TGF-β1诱导人腹膜间皮细胞EMT,结果显示TGF-β1刺激人腹膜间皮细胞后能下调 E-cadherin的表达和上调α-SMA、FN和ColⅢ的表达。此外,我们还发现苦参碱能上调TGF-β1诱导后E-cadherin的表达,下调α-SMA、FN以及ColⅢ的表达,对TGF-β1诱导的人腹膜间皮细胞EMT具有明显的抑制作用。
TGF-β1激活的信号通路可分为Smad依赖和非Smad依赖信号通路,在腹膜间皮细胞EMT和腹膜纤维化的发生及进展中均起着重要的作用,其中Smad2和Smad3是Smad依赖信号通路中最为关键的下游因子,而ERK1/2信号通路则是TGF-β1诱导腹膜间皮细胞EMT的重要非Smad依赖信号通路之一,它们最终都作用于介导EMT的主要因子Snail[8]。研究表明,Snail是E-cadherin表达的直接抑制剂[16],哺乳动物Snail主要包括Snail1和Snail2,其表达具有组织特异性[17],而在腹膜间皮细胞EMT中Snail2是抑制E-cadherin表达的重要因子[8]。本研究结果显示TGF-β1刺激人腹膜间皮细胞后能上调Smad2、Smad3和ERK1/2蛋白磷酸化水平,然而同时苦参碱干预处理发现其只能下调ERK1/2蛋白磷酸化水平。此外,本研究结果也发现TGF-β1刺激人腹膜间皮细胞后Snail2的表达水平显著升高;而苦参碱能显著下调TGF-β1诱导后Snail2的表达水平。这些研究结果提示,苦参碱可能通过ERK1/2信号通路下调Snail2的表达水平来抑制腹膜间皮细胞EMT。
苦参碱是豆科槐属植物苦参及广豆根中的主要生物碱,具有解热镇痛、抑菌、抗病毒、调节免疫、强心、降压、提高机体免疫力等功效。近年研究发现其在肝、肺和心脏等器官纤维化中具有抗纤维化的作用[10-12],在腹膜纤维化中的作用也有相关研究报道。姜燕等[13]研究发现苦参碱可以通过抑制血管内皮生长因子(VEGF)和FN来防治腹膜纤维化。朱士彦等[18-19]研究发现苦参碱能拮抗高糖致大鼠腹膜间皮细胞分泌肿瘤坏死因子α(TNF-α)和TGF-β1,还发现苦参碱能下调高糖诱导的大鼠腹膜间皮细胞叉头状螺旋转录因子FOXP3 mRNA的表达水平,从而保护腹膜间皮细胞。此外,苦参碱能抑制高糖引起的核因子kappa B(NF-κB p65)蛋白表达上调,减轻腹膜慢性炎症,延缓腹膜纤维化的发生[20]。我们前期研究发现苦参碱能抑制脂多糖(LPS)诱导的人腹膜间皮细胞EMT[21],而本研究发现苦参碱对TGF-β1诱导的人腹膜间皮细胞EMT也具有明显的抑制作用。
综上所述,我们发现TGF-β1能诱导人腹膜间皮细胞EMT,而苦参碱能上调TGF-β1诱导的E-cadherin的表达,下调TGF-β1诱导的α-SMA、FN、ColⅢ和Snail2的表达,且其能使TGF-β1诱导的ERK1/2蛋白高磷酸化水平下调至正常水平,苦参碱可能通过ERK1/2信号通路调控Snail2的表达水平来抑制腹膜间皮细胞EMT。

参考文献

[1]
Huang CC, Cheng KF, Wu HD. Survival analysis: comparing peritoneal dialysis and hemodialysis in Taiwan[J]. Perit Dial Int, 2008, 28 Suppl 3: S15-S20.
[2]
Mehrotra R, Chiu YW, Kalantar-Zadeh K, et al. Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease[J]. Arch Intern Med, 2011, 171(2): 110-118. DOI: 10.1001/archinternmed.2010.352.
The annual payer costs for patients treated with peritoneal dialysis (PD) are lower than with hemodialysis (HD), but in 2007, only 7% of dialysis patients in the United States were treated with PD. Since 1996, there has been no change in the first-year mortality of HD patients, but both short- and long-term outcomes of PD patients have improved.Data from the US Renal Data System were examined for secular trends in survival among patients treated with HD and PD on day 90 of end-stage renal disease (HD, 620 020 patients; PD, 64 406 patients) in three 3-year cohorts (1996-1998, 1999-2001, and 2002-2004) for up to 5 years of follow-up using a nonproportional hazards marginal structural model with inverse probability of treatment and censoring weighting.There was a progressive attenuation in the higher risk for death seen in patients treated with PD in earlier cohorts; for the 2002-2004 cohort, there was no significant difference in the risk of death for HD and PD patients through 5 years of follow-up. The median life expectancy of HD and PD patients was 38.4 and 36.6 months, respectively. Analyses in 8 subgroups based on age (<65 and ≥65 years), diabetic status, and baseline comorbidity (none and ≥1) showed greater improvement in survival among patients treated with PD relative to HD at all follow-up periods.In the most recent cohorts, patients who began treatment with HD or PD have similar outcomes.
[3]
达静静, 董蓉, 沈燕, 等.1, 25-二羟基维生素D3调控腹膜纤维化大鼠结缔组织生长因子和热休克蛋白47的表达[J]. 中华肾脏病杂志, 2018, 34(7): 531-538. DOI:10.3760/cma.j.issn.1001-7097.2018.07.009.
目的 观察腹膜纤维化大鼠模型中结缔组织生长因子(CTGF)和热休克蛋白47(HSP47)在腹膜中的表达,探讨1,25-二羟基维生素D3[1,25-(OH)2-VitD3]抑制腹膜纤维化的可能机制。 方法 按随机数字表法将6周龄雄性Sprague-Dawley (SD)大鼠分为3组:对照组(n=8)、模型组(n=8)和1,25-(OH)2-VitD3(VitD3)组(n=8)。腹腔注射含有0.1%葡萄糖和15%乙醇的氯己定(CHX)溶液0.2 ml/d构建腹膜纤维化(PF)模型。VitD3组于造模当日开始腹腔注射1,25-(OH)2-VitD3[6 ng?(100 g)-1?d-1]。4周后,观察各组大鼠腹膜转运功能、肾功能、腹膜厚度及血清25羟基维生素D3水平。原代培养SD大鼠腹膜间皮细胞分组为:对照组、高糖诱导组(HG,2.5%)、CTGF siRNA干预组(CTGF siRNA+HG)、VitD3干预组(VitD3+HG)和联合干预组(CTGF siRNA+VitD3+HG)。采用荧光定量PCR、Western印迹和免疫荧光检测CTGF和HSP47,ELISA检测纤维连接蛋白(FN)在腹膜组织和腹膜间皮细胞中的表达。 结果 与对照组相比,模型组大鼠腹膜超滤量明显降低(P<0.05),腹膜厚度和腹透液尿素氮/血尿素氮(DUN/BUN)比值增加(均P<0.05),腹膜组织CTGF及HSP47的表达均明显增加(均P<0.05)。应用1,25-(OH)2-VitD3干预后,大鼠腹膜纤维化程度明显改善(P<0.05),腹膜厚度下降(P<0.05),CTG及HSP47的表达明显减少(均P<0.05)。体外实验,经CTGF siRNA、1,25-(OH)2-VitD3和二者联合分别干预2.5%高糖诱导的腹膜间皮细胞,FN、CTGF及HSP47的表达量较高糖组均明显减少(均P<0.05)。 结论 腹膜纤维化模型大鼠腹膜CTGF和HSP47的表达明显增加,1,25-(OH)2-VitD3可能通过下调CTGF的表达,降低HSP47和FN的表达,从而改善腹膜纤维化。
[4]
Wu J, Xing C, Zhang L, et al. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis[J]. J Cell Mol Med, 2018, 22(2): 1190-1201. DOI: 10.1111/jcmm.13393.
Long-term peritoneal dialysis is accompanied by functional and histopathological alterations in the peritoneal membrane. In the long process of peritoneal dialysis, high-glucose peritoneal dialysis solution (HGPDS) will aggravate the peritoneal fibrosis, leading to decreased effectiveness of peritoneal dialysis and ultrafiltration failure. In this study, we found that the coincidence of elevated TGF-β1 expression, autophagy, apoptosis and fibrosis in peritoneal membrane from patients with peritoneal dialysis. The peritoneal membranes from patients were performed with immunocytochemistry and transmission electron microscopy. Human peritoneal mesothelial cells were treated with 1.5%, 2.5% and 4.25% HGPDS for 24 hrs; Human peritoneal mesothelial cells pre-treated with TGF-β1 (10 ng/ml) or transfected with siRNA Beclin1 were treated with 4.25% HGPDS or vehicle for 24 hrs. We further detected the production of TGF-β1, activation of TGF-β1/Smad2/3 signalling, induction of autophagy, EMT, fibrosis and apoptosis. We also explored whether autophagy inhibition by siRNA targeting Beclin 1 reduces EMT, fibrosis and apoptosis in human peritoneal mesothelial cells. HGPDS increased TGF-β1 production, activated TGF-β1/Smad2/3 signalling and induced autophagy, fibrosis and apoptosis hallmarks in human peritoneal mesothelial cells; HGPDS-induced Beclin 1-dependent autophagy in human peritoneal mesothelial cells; Autophagy inhibition by siRNA Beclin 1 reduced EMT, fibrosis and apoptosis in human peritoneal mesothelial cells. Taken all together, these studies are expected to open a new avenue in the understanding of peritoneal fibrosis, which may guide us to explore the compounds targeting autophagy and achieve the therapeutic improvement of PD.© 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
[5]
Davies SJ, Phillips L, Naish PF, et al. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis[J]. J Am Soc Nephrol, 2001, 12(5): 1046-1051.
Peritoneal solute transport increases with time on treatment in a proportion of peritoneal dialysis (PD) patients, contributing to ultrafiltration failure. Continuous exposure of the peritoneum to hypertonic glucose solutions results in morphologic damage that may have a causative role in changes in peritoneal function. The purpose of this analysis was to establish whether increased exposure to glucose preceded changes in solute transport in a selected group of long-term PD patients. Peritoneal solute transport, residual renal function, peritonitis rate, and peritoneal exposure to glucose were recorded prospectively in a cohort of 303 patients at a single dialysis center. A subgroup of individuals, treated continuously for 5 yr, were identified and defined retrospectively as having either stable or increasing transport status. Of the 22 patients who were treated continuously for 5 yr, 13 had stable solute transport (solute transport at start, 0.67 [+/-0.1]; at 5 yr, 0.67 [+/-0.1]), whereas 9 had a sustained increase (solute transport at start, 0.56 [+/-0.08]; at 5 yr, 0.77 [+/-0.09]). Compared with the stable patients, those with increasing transport had earlier loss in residual renal function and were exposed to significantly more hypertonic glucose during the first 2 yr of treatment that preceded the increase in solute transport. This was associated with greater achieved ultrafiltration compensating for the reduced urinary volumes in these patients. Further increases in glucose exposure were observed as solute transport continued to rise. Peritonitis, including severity of infection and causative organism, was similar in both groups. In this selected group of long-term survivors on PD, an increase in solute transport with time was preceded by increased peritoneal exposure to hypertonic glucose. This is supportive evidence that hypertonic glucose may play a causative role in alterations in peritoneal membrane function.
[6]
肖静, 王聪, 宫亚楠, 等. 白细胞介素6通过STAT3诱导腹膜间皮细胞上皮间质转分化[J]. 中华肾脏病杂志, 2017, 33(9): 711-717. DOI: 10.3760/cma.j.issn.1001-7097.2017.09.011.
目的 探讨信号传导与转录激活基因3(STAT3)对白细胞介素6(IL-6)诱导人腹膜间皮细胞(HPMC)上皮间质转分化(EMT)的作用。 方法 体外培养HPMC并分组:(1)50 μg/L IL-6刺激HPMC不同时间,按刺激时间24、48、72 h分组;(2)不同浓度IL-6刺激HPMC 24 h,按IL-6浓度50、100 μg/L分组;(3)应用慢病毒介导的RNA干扰技术建立稳定沉默STAT3基因的HPMC,分成空白对照组、IL-6组、空载体组、空载体+IL-6组、慢病毒感染组、慢病毒感染+IL-6组,其中IL-6刺激均以50 μg/L终浓度刺激24 h。实时荧光定量PCR检测上皮钙黏素(E-cadherin)、α平滑肌肌动蛋白(α-SMA)及血管内皮生长因子(VEGF)mRNA的表达;Western印迹检测上述分子的蛋白表达及通路蛋白Janus激酶2(JAK2)、STAT3磷酸化水平;细胞免疫荧光观察E-cadherin、α-SMA的表达和分布。 结果 与对照组比较,不同IL-6浓度组和不同作用时间组细胞E-cadherin蛋白和mRNA表达均下降(均P<0.05),α-SMA、VEGF的蛋白和mRNA表达均升高(均P<0.05),通路蛋白磷酸化(p)-JAK2/JAK2比值和p-STAT3/STAT3比值均升高(均P<0.05),且均呈剂量和时间依赖性。沉默STAT3基因后,与空载体+IL-6组比较,慢病毒感染+IL-6组α-SMA、VEGF蛋白表达均下降(均P<0.05),E-cadherin蛋白表达上升(P<0.05)。 结论 IL-6通过激活STAT3通路而刺激HPMC分泌VEGF并诱导EMT的发生。沉默STAT3基因可抑制人腹膜间皮细胞EMT的发生。
[7]
Patel P, Sekiguchi Y, Oh KH, et al. Smad3-dependent and -independent pathways are involved in peritoneal membrane injury[J]. Kidney Int, 2010, 77(4): 319-328. DOI: 10.1038/ki. 2009.436.
Transition of peritoneal mesothelial cells to a mesenchymal phenotype plays an integral role in the angiogenic and fibrotic changes seen in the peritoneum of patients receiving long-term peritoneal dialysis. While signaling by transforming growth factor (TGF)-beta through Smad proteins likely causes these changes, it is possible that non-Smad pathways may also play a role. Here, we found that Smad3-deficient mice were protected from peritoneal fibrosis and angiogenesis caused by adenovirus-mediated gene transfer of active TGF-beta1 to mesothelial cells; however, mesothelial transition occurred in this setting, suggesting involvement of non-Smad mechanisms. The phosphatidyl inositol 3 kinase (PI3K) target, Akt, was upregulated in both Smad-deficient and wild-type mice after exposure to TGF-beta1. In vivo inhibition of the mammalian target of rapamycin (mTOR) by rapamycin completely abrogated the transition response in Smad3-deficient but not in wild-type mice. Rapamycin blocked nuclear localization of beta-catenin independent of glycogen synthase kinase 3beta activity. Further, in Smad3-deficient mice rapamycin reduced the expression of alpha-smooth muscle actin, which is an epithelial-to-mesenchymal transition-associated gene. Hence, we conclude that TGF-beta1 causes peritoneal injury through Smad-dependent and Smad-independent pathways; the latter involves redundant mechanisms inhibited by rapamycin, suggesting that suppression of both pathways may be necessary to abrogate mesothelial transition.
[8]
Strippoli R, Moreno-Vicente R, Battistelli C, et al. Molecular mechanisms underlying peritoneal EMT and fibrosis[J]. Stem Cells Int, 2016, 2016: 3543678. DOI: 10.1155/2016/3543678.
[9]
Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum[J]. J Am Soc Nephrol, 2005, 16(2): 425-436. DOI: 10.1681/ASN.2004060436.
Epithelial mesenchymal transition (EMT), a process involved in many growth and repair functions, has been identified in the peritoneal tissues of patients who undergo peritoneal dialysis. The sequence of changes in gene regulation and cellular events associated with EMT after TGF-beta1-induced peritoneal fibrosis is reported. Sprague-Dawley rats received an intraperitoneal injection of an adenovirus vector that transfers active TGF-beta1 (AdTGF-beta1) or control adenovirus, AdDL. Animals were killed 0 to 21 days after infection. Peritoneal effluent and tissue were analyzed for markers of EMT. In the animals that were treated with AdTGF-beta1, an increase in expression of genes associated with EMT and fibrosis, such as type I collagen A2, alpha-smooth muscle actin, and the zinc finger regulatory protein Snail, was identified. Transition of mesothelial cells 4 to 7 d after infection, with appearance of epithelial cells in the submesothelial zone 7 to 14 d after exposure to AdTGF-beta1, was demonstrated. This phase was associated with disruption of the basement membrane and increased expression of matrix metalloproteinase 2. By 14 to 21 d after infection, there was evidence of restoration of normal submesothelial architecture. These findings suggest that EMT occurs in vivo after TGF-beta1 overexpression in the peritoneum. Cellular changes and gene regulation associated with EMT are evident throughout the fibrogenic process and are not limited to early time points. This further supports the central role of TGF-beta1 in peritoneal fibrosis and provides an important model to study the sequence of events involved in TGF-beta1-induced EMT.
[10]
Ma X, Chen R, Liu X, et al. Effects of matrine on JAK-STAT signaling transduction pathways in bleomycin-induced pulmonary fibrosis[J]. Afr J Tradit Complement Altern Med, 2013, 10(3): 442-448. DOI: 10.4314/ajtcam.v10i3.10.
[11]
Yu JL, Li JH, Chengz RG, et al. Effect of matrine on transforming growth factor β1 and hepatocyte growth factor in rat liver fibrosis model[J]. Asian Pac J Trop Med, 2014, 7(5):390-393. DOI: 10.1016/S1995-7645(14)60062-6.
[12]
Liu Z, Zhang Y, Tang Z, et al. Matrine attenuates cardiac fibrosis by affecting ATF6 signaling pathway in diabetic cardiomyopathy[J]. Eur J Pharmacol, 2017, 804: 21-30. DOI: 10.1016/j.ejphar.2017.03.061.
Cardiac function and compliance impairments are the features of cardiac fibrosis. Matrine shows therapeutic effects on cardiovascular diseases and organ fibrosis. In this study, we examined the therapeutic effects and mechanisms of matrine on cardiac fibrosis of DbCM. Matrine was administrated orally to rats with DbCM. Cardiac functions and compliance were evaluated. The collagen deposition was visualized by sirius red staining. Real-time PCR was used to determine the expression level of miRNA. Western blotting was performed to assess the protein expression. NFAT nuclear translocation was evaluated by fluorescent immunochemistry staining and Western blotting. Intracellular calcium level was assessed by fura-2/AM staining. A colorimetric method was used to determine calcineurin enzymatic activity. Impaired cardiac function and compliance were observed in rats with DbCM. Increased collagen deposition in cardiac tissue was found. Furthermore, ATF6 signaling was activated, leading to intracellular calcium accumulation and NFAT activation which further initiated ECM gene expressions. Matrine administration recovered cardiac function and improved compliance by exerting inhibitory effects against ATF6 signaling- induced fibrosis. The high- glucose incubation induced ATF6 signaling activation in cultured CFs to increase the synthesis of ECM. Matrine blocked the ATF6 signaling in CFs to inhibit ECM synthesis within non- cytotoxic concentrations. ATF6 signaling induced cardiac fibrosis was one of the mechanisms involved in DbCM, which was characterized by loss of cardiac compliance and functions. Matrine attenuated cardiac compliance and improved left ventricular functions by exerting therapeutic effects against cardiac fibrosis via affecting ATF6 signaling pathway.Copyright © 2017 Elsevier B.V. All rights reserved.
[13]
姜燕, 龚燕梅, 曾红兵, 等. 苦参碱对实验性大鼠腹膜纤维化的影响[J]. 中国医院药学杂志, 2008, 28(24): 2110-2112. DOI: 10.3321/j.issn:1001-5213.2008.24.012.
[14]
Yáñez-Mó M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells[J]. N Engl J Med, 2003, 348(5): 403-413. DOI: 10.1056/NEJMoa 020809.
[15]
Hill C, Li J, Liu D, et al. Autophagy inhibition-mediated epithelial-mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis[J]. Cell Death Dis, 2019, 10(8): 591. DOI: 10.1038/s41419-019-1820-x.
Idiopathic pulmonary fibrosis (IPF), the prototypic progressive fibrotic interstitial lung disease, is thought to be a consequence of repetitive micro-injuries to an ageing, susceptible alveolar epithelium. Ageing is a risk factor for IPF and incidence has been demonstrated to increase with age. Decreased (macro)autophagy with age has been reported extensively in a variety of systems and diseases, including IPF. However, it is undetermined whether the role of faulty autophagy is causal or coincidental in the context of IPF. Here, we report that in alveolar epithelial cells inhibition of autophagy promotes epithelial-mesenchymal transition (EMT), a process implicated in embryonic development, wound healing, cancer metastasis and fibrosis. We further demonstrate that this is attained, at least in part, by increased p62/SQSTM1 expression that promotes p65/RELA mediated-transactivation of an EMT transcription factor, Snail2 (SNAI2), which not only controls EMT but also regulates the production of locally acting profibrogenic mediators. Our data suggest that reduced autophagy induces EMT of alveolar epithelial cells and can contribute to fibrosis via aberrant epithelial-fibroblast crosstalk.
[16]
Cano A, Pérez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression[J]. Nat Cell Biol, 2000, 2(2): 76-83. DOI: 10.1038/35000025.
The Snail family of transcription factors has previously been implicated in the differentiation of epithelial cells into mesenchymal cells (epithelial-mesenchymal transitions) during embryonic development. Epithelial-mesenchymal transitions are also determinants of the progression of carcinomas, occurring concomitantly with the cellular acquisition of migratory properties following downregulation of expression of the adhesion protein E-cadherin. Here we show that mouse Snail is a strong repressor of transcription of the E-cadherin gene. Epithelial cells that ectopically express Snail adopt a fibroblastoid phenotype and acquire tumorigenic and invasive properties. Endogenous Snail protein is present in invasive mouse and human carcinoma cell lines and tumours in which E-cadherin expression has been lost. Therefore, the same molecules are used to trigger epithelial-mesenchymal transitions during embryonic development and in tumour progression. Snail may thus be considered as a marker for malignancy, opening up new avenues for the design of specific anti-invasive drugs.
[17]
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?[J]. Nat Rev Cancer, 2007, 7(6): 415-428. DOI: 10. 1038/nrc2131.
The molecular mechanisms that underlie tumour progression are still poorly understood, but recently our knowledge of particular aspects of some of these processes has increased. Specifically, the identification of Snail, ZEB and some basic helix-loop-helix (bHLH) factors as inducers of epithelial-mesenchymal transition (EMT) and potent repressors of E-cadherin expression has opened new avenues of research with potential clinical implications.
[18]
朱士彦, 甘平, 廖彧, 等. 高糖对大鼠腹膜间皮细胞分泌细胞因子的影响及苦参碱的干预作用[J]. 重庆医学, 2016, 45(27): 3770-3772. DOI: 10.3969/j.issn.1671-8348.2016.27.008.
[19]
朱士彦, 甘平, 巫建芳, 等. 高糖对大鼠腹膜间皮细胞分泌FOXP3mRNA的影响及苦参碱的干预作用[J]. 中国中西医结合肾病杂志, 2016, 17(1): 3.
[20]
朱士彦, 甘平, 曹院国, 等. 苦参碱对高糖致大鼠腹膜间皮细胞NF-κB p65表达的影响[J]. 临床军医杂志, 2010, 38(5): 689-692. DOI: 10.3969/j.issn.1671-3826.2010.05.003.
[21]
Li YZ, Peng X, Ma YH, et al. Matrine suppresses lipopolysaccharide-induced fibrosis in human peritoneal mesothelial cells by inhibiting the epithelial-mesenchymal transition[J]. Chin Med J (Engl), 2019, 132(6): 664-670. DOI: 10. 1097/CM9.0000000000000127.

利益冲突

所有作者均声明不存在利益冲突

基金

国家自然科学基金(81960149)
国家自然科学基金(81660133)
PDF(4347 KB)

1024

Accesses

0

Citation

Detail

段落导航
相关文章

/