Study on neurogenic bladder-induced renal fibrosis based on AngⅡ/TGF-β1/Smads signaling pathway

Zheng Yan, Ma Yuan, Ren Xuejing, Niu Peiyuan, Yan Lei, Cao Huixia, Shao Fengmin

PDF(4624 KB)
Chinese Journal of Nephrology ›› 2021, Vol. 37 ›› Issue (12) : 1001-1007. DOI: 10.3760/cma.j.cn441217-20201022-00151
Basic Study

Study on neurogenic bladder-induced renal fibrosis based on AngⅡ/TGF-β1/Smads signaling pathway

Author information +
History +

Abstract

Objective To establish a rat model of neurogenic bladder and analyze the changes in kidney morphology and function and the expression of proteins in AngiotensinⅡ(AngⅡ)/transforming growth factor β1 (TGF-β1)/Smads pathway. Methods Sprague-Dawley rats were randomly divided into experimental group (spinal nerve amputation, n=36) and control group (sham operation, n=12). At 6, 12, and 24 weeks, the bladder compliance was measured by cystometry, the kidney morphology was detected by B-ultrasound, blood urea nitrogen (BUN) and serum creatinine (Scr) in blood samples were examined, the kidney pathological changes were detected by Masson and HE staining, the distribution of AngⅡ/TGF-β1/Smads pathway proteins was analyzed by immunohistochemisty, and the protein expressions in kidney were detected by Western blotting. Results Urodynamics showed that the basic bladder pressure in experimental group was higher than that in control group. B-ultrasound showed that compared with the control group, the diameter of the renal pelvis of the rats with nerve dissection gradually increased (P<0.05), and the hydronephrosis was gradually obvious. Compared with the control group, the BUN and Scr in experimental group gradually increased (both P<0.01). Masson and HE staining showed that compared with the control group, the collagen expression and renal tubulointerstitial scores in experimental group were gradually increased (both P<0.01). Immunohistochemisty showed that compared with the control group, in experimental group the expression of angiotensinⅡ receptor type 1 (AT1), TGF-β receptor 1(TGF-βR1), phosphorylated Smad2 gradually increased (all P<0.01), the pathway inhibitor Smad6 gradually decreased (P<0.01), and the distribution of each protein in kidney was consistent. Western blotting showed a corresponding expression trend with immunohistochemisty. Conclusions In neurogenic bladder caused by bilateral spinal nerve amputation, due to bladder dysfunction, increased bladder pressure induces hydronephrosis, destruction of the nephron structure, activation of AngⅡ/TGF-β1/Smads pathway, and renal fibrosis. This method is effective and has clinical similarities, laying a foundation for exploring neurogenic bladder treatment.

Key words

Kidney / Fibrosis / AngiotensinⅡ / Transforming growth factor beta1 / Smads / Signaling pathway

Cite this article

Download Citations
Zheng Yan. , Ma Yuan. , Ren Xuejing. , Niu Peiyuan. , Yan Lei. , Cao Huixia. , Shao Fengmin. Study on neurogenic bladder-induced renal fibrosis based on AngⅡ/TGF-β1/Smads signaling pathway[J]. Chinese Journal of Nephrology, 2021, 37(12): 1001-1007. DOI: 10.3760/cma.j.cn441217-20201022-00151.
神经源性膀胱(neurogenic bladder,NB)是由神经管畸形、脊髓和/或脊髓神经发育不良、腰骶部脊柱外伤引发的一系列膀胱/尿路功能障碍的总称[1-2],临床表现为排尿困难、反复尿路感染、上尿路损伤、肾积水,最终导致肾纤维化、肾衰竭甚至死亡[3]。目前,NB的发病机制尚不完全清楚,治疗困难,是世界性医学难题,一旦发展为肾纤维化,将不可逆地导致肾衰竭,而终末期患者只能依赖透析或换肾,严重影响生活质量,增加社会负担。因此,有必要进一步研究NB导致肾纤维化的机制。本研究通过建立双侧腰6(L6)+骶1(S1)神经切断后NB大鼠模型,研究肾脏形态、结构变化和血管紧张素Ⅱ/转化生长因子β1/Smads(AngⅡ/TGF-β1/Smads)信号通路在肾纤维化中的作用,这可能有助于阐明NB引起肾脏损伤的分子机制并提示最好的防治策略。

材料与方法

一、 主要材料

1. 试剂: 兔抗血管紧张素Ⅱ一型受体(AT1)单抗,兔抗TGF-β受体1(TGF-βR1)、Smad2/磷酸化Smad2(pSmad2)和Smad6多抗(英国Abcam);兔抗胶原(collagen)Ⅰ和collagenⅢ多抗(武汉Servicebio);兔抗AT1多抗(北京Bioss);辣根过氧化物酶(HRP)标记的羊抗兔IgG(美国Santa Cruz);增强化学发光(ECL)试剂盒(上海碧云天);Masson染色试剂盒(北京中杉金桥);PE50管(美国BD)。
2. 实验动物: 48只12周龄健康雌性Sprague-Dawley(SD)大鼠[(250±10.6)g]由郑州大学医学院实验动物中心提供,饲养在无特定病原(SPF)级动物房,温度为(22±1)℃,相对湿度为45%~55%,人工光照明暗各12 h。大鼠随机分为2组:实验组(神经离断,n=36)和对照组(假手术,n=12)。实验组分别于神经离断后6周、12周和24周处死,对照组饲养至24周。动物饲养和动物实验获郑州大学伦理委员会批准(伦理批准号:2018-KY-86)。

二、 方法

1. NB大鼠模型建立: 通过切断大鼠双侧L6和S1脊神经建立NB模型,模拟腰骶部脊柱裂、腰骶脊髓和/或脊髓神经发育不良、脊髓下腰段创伤引起的NB[4]。以2%异氟烷气体麻醉后,取L6-S1后正中切口,暴露并切断双侧L6+S1的腹根和背根,埋入邻近肌肉,以防止神经自发再生。对照组进行相同操作暴露神经根,但不进行离断。术后动物被单独安置在保温毯上过夜,自由进食和饮水。术后连续3 d给予青霉素(2×106 U/d)。脊神经离断组的膀胱由泌尿科医生使用Crede's手法排空,以促进恢复。
2. 尿动力学检测: 大鼠以2%异氟烷气体麻醉后,按照课题组前期实验行膀胱造瘘术[5]。清醒时放入限制性鼠笼,连接延长管及T型三通,三通外接大鼠膀胱测压管,微量注射泵和尿流动力学设备(BL-420/820生物机能实验系统的测压通道),管道连接成功后在笼底置零,以0.1 ml/min的速度向大鼠膀胱灌注37℃的生理盐水,并在尿动力学系统中记录膀胱压力曲线。观察压力曲线30 min后,取3个连续排尿周期,记录基础膀胱内压力(Pves.base,大鼠储尿期的最低膀胱压)、最大膀胱收缩压(Pves.max,大鼠排尿期的最大膀胱压)和膀胱漏尿点压力(bladder leak point pressure,BLPP)。
3. 肾脏B超检查: 大鼠经2%异氟烷气体麻醉,肾区去毛后置于彩色超声诊断仪(日本ALOKA),使用线阵探头,频率10 MHz,增益65 dB,涂抹耦合剂后,二维模式显示大鼠肾脏的最大冠状切面和纵切面图像,记录肾盂直径。
4. 血标本收集: 处死假手术组大鼠时及脊神经离断6、12和24周大鼠时,下腔静脉取血,收取血清,全自动生化分析仪检测血肌酐(Scr)和尿素氮(BUN)值。
5. 肾脏组织学检测: 收集肾脏组织,4%多聚甲醛固定,制作石蜡切片(4 μm)。(1)Masson染色:按照试剂盒说明书中的方法进行操作,普通光镜下观察肾间质胶原纤维沉积程度。(2)苏木精-伊红(HE)染色:常规脱蜡、至水染色、盐酸乙醇分化、二甲苯透明、中性树胶封片,普通光镜下观察肾小管间质病变程度,即肾小管间质损伤指数[6]
6. 免疫组化: 石蜡切片脱蜡至水,柠檬酸缓冲液高温修复,3%H2O2灭活组织内源性过氧化物酶,血清封闭,滴加一抗:AT1(1∶100)、TGF-βR1(1∶200)、pSmad2(1∶200)、Smad6(1∶100),4℃过夜,滴加HRP标记二抗(1∶1 000),DAB显色,苏木素复染,封片。采用IPP 6.0软件计数高倍镜视野下阳性细胞数。
7. Western印迹: 收集肾脏组织,RIPA裂解、加热变性、离心取上清,10%十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE),转膜至聚偏氟乙烯(PVDF)膜,5%脱脂牛奶封闭,加入一抗:兔抗AT1单抗(1∶1 000),兔抗TGF-βR1(1∶1 000)、Smad2(1∶2 000)、pSmad2(1∶1 000)、Smad6(1∶2 000)、collagenⅠ(1∶2 000)、collagenⅢ(1∶1 000)多抗,HRP标记的羊抗兔IgG(1∶5 000)为二抗。ECL化学发光法显色。β-actin为内参。使用Image J软件对条带的密度和面积进行定量。
8. 统计分析: 采用SPSS 26.0软件进行数据分析,计量资料以x¯±s 形式表示,两组间比较采用t检验,多组间比较采用单因素方差分析。P<0.05视为差异有统计学意义。

结果

1. 膀胱压变化: 神经离断后第3天,基础膀胱压略微升高,排尿间隔增大,排尿时间变长,表现为不受大脑控制的非自主排尿,膀胱最大收缩压降低。以上结果表明,NB模型建立成功。与对照组相比,神经离断后6、12和24周尿动力检查显示,随着时间推移,基础膀胱压逐渐增高,BLPP不规律性出现(无时间周期,无明显收缩/排尿期)且逐渐增高,膀胱顺应性逐渐下降。见图1
图1 对照组和神经离断组大鼠不同时间点尿动力图
注:1 mmHg=0.133 kPa

Full size|PPT slide

2. 肾脏B超结果: 对照组肾脏形态结构正常;随时间推移,神经离断组大鼠肾脏肾实质变薄、皮质增厚,相邻肾盏相互融合。与对照组相比,神经离断后6周和12周大鼠肾盂直径均较高(均P<0.05),随时间推移逐渐增加。离断24周时肾盂肾盏变形和纤维化,可见肾积水导致尿液向肾被膜下漏出。见图2
图2 对照组和神经离断组大鼠不同时间点肾脏B超图
注:A:对照组;B:神经离断6周;C:神经离断12周;D:神经离断24周;与对照组比较,aP<0.01;与神经离断6周比较,bP<0.05;n=12;黄色箭头表示肾盂直径

Full size|PPT slide

3. BUN、Scr变化:与对照组相比,神经离断后6周、12周和24周大鼠血清BUN、Scr均较高(均P<0.01),随时间推移而增加(P<0.01),见图3
图3 对照组和神经离断组大鼠不同时间点血BUN、Scr变化
注:A:对照组;B:神经离断6周;C:神经离断12周;D:神经离断24周;与对照组比较,aP<0.01;与神经离断6周比较,bP<0.01;与神经离断12周比较,cP<0.01;n=12

Full size|PPT slide

4. 肾脏病理改变: Masson染色结果显示,与对照组相比,神经离断6周、12周和24周时大鼠胶原沉积(蓝染)面积较大(均P<0.01),随时间推移而增加(P<0.01)。HE染色结果显示,对照组肾小管之间排列紧密,肾间质未见明显炎性细胞浸润,而随时间推移离断组出现肾小管萎缩,管腔扩张迂曲,肾间质及血管周围出现炎性细胞浸润;与对照组相比,神经离断后各时间点小管-间质评分均较高(均P<0.01),随时间推移而增加(P<0.01)。见图4
图4 对照组和神经离断组大鼠不同时间点肾脏病理改变(×200)
注:A:对照组;B:神经离断6周;C:神经离断12周;D:神经离断24周;黑色箭头示肾小球,黄色箭头示肾小管,绿色箭头示胶原纤维;与对照组比较,aP<0.01;与神经离断6周比较,bP<0.01;与神经离断12周比较,cP<0.01;n=12

Full size|PPT slide

5. 免疫组化结果: AngⅡ受体AT1主要定位于胞质和胞膜,TGF-βR1定位于胞质,pSmad2和Smad6定位于细胞核。上述通路蛋白主要分布在肾远端小管、集合管上皮细胞。对照组AT1、TGF-βR1和pSmad2呈低水平表达,Smad6呈高水平表达,随离断时间延长,AT1、TGF-βR1和pSmad2促纤维化因子表达逐渐增加(均P<0.01),而Smad6发挥竞争性抑制作用,表达逐渐减少(均P<0.01)。因此,AT1、TGF-βR1、pSmad2和Smad6在NB诱导的肾纤维化发生和进展中的分布具有一致性。见图5
图5 对照组和神经离断组大鼠不同时间点AngⅡ/TGF-β1/Smads通路蛋白的表达变化(免疫组化 ×400)
注:A:对照组;B:神经离断6周;C:神经离断12周;D:神经离断24周;与对照组比较,aP<0.01;与神经离断6周比较,bP<0.01;与神经离断12周比较,cP<0.01;n=12

Full size|PPT slide

6. Western印迹结果: 神经离断6、12和24周,大鼠肾脏AT1和TGF-βR1的表达均高于对照组(均P<0.05),并随时间推移而增加;Smad2磷酸化水平也高于对照组(均P<0.05),并随时间推移而增加。而通路抑制蛋白Smad6表达从12周开始低于对照组(P<0.05)。此外,神经离断12周和24周Ⅰ型和Ⅲ型胶原表达均高于对照组(均P<0.05),并随时间推移而增加。见图6
图6 对照组和神经离断组肾脏AngⅡ/TGF-β1/Smads通路相关蛋白的表达(Western印迹)
注:A:对照组;B:神经离断6周;C:神经离断12周;D:神经离断24周;与对照组比较,aP<0.05,bP<0.01;与神经离断6周比较,cP<0.05,dP<0.01;与神经离断12周比较,eP<0.01;n=12

Full size|PPT slide

讨论

NB是由神经控制机制病变引发的下尿路功能障碍,主要表现为逼尿肌麻痹和膀胱持续高压,可引发多种长期并发症,其中最危险的是肾损伤[7-8]。NB在临床上治疗棘手,主要治疗目的在于保护肾功能。然而,尚无安全、有效的动物模型来模拟NB诱导的肾纤维化的发生发展。
SD大鼠常被用作NB动物模型[9]。由于雌性具有尿道短,利于膀胱造瘘、方便进行尿动力学检测,且造瘘后便于crede's手法排尿的生理优点,因此我们选择雌性SD大鼠进行双侧L6和S1脊神经离断,手法排尿24周后观察NB对肾脏的影响。尿动力显示随离断时间延长,NB大鼠均无明显的膀胱收缩/排尿期,基础膀胱内压逐渐升高并出现BLPP,提示膀胱出现排空障碍。B超检查肾脏形态的改变发现,脊神经离断后中晚期(24周),长时间的膀胱内高压引起的输尿管、肾盂肾盏压力升高,导致肾积水。血肌酐、尿素氮升高提示肾功能受损。Masson和HE染色证实了肾脏在长期输尿管高压下的病理性变化,包括肾小球正常生理结构遭到破坏,肾小管萎缩,肾间质在炎性细胞的不断刺激下,纤维结缔组织逐渐增生。该模型与广泛用于肾纤维化研究的单侧输尿管梗阻模型(UUO)相比,两者均为肾后性梗阻模型,具有相似的病理过程,但后者仅为单侧输尿管受阻引起的单侧肾脏损伤,且在输尿管结扎后1周左右即出现肾间质纤维化[10-11],而在临床上,先天性脊柱裂儿童或脊髓下腰段受损的患者,经过数月甚至1~2年的时间,才最终使肾脏纤维化,整个发展过程缓慢且不可逆。本研究中脊神经离断所致NB模型先出现膀胱排空障碍,尿液反流后逐渐出现肾损伤,能更好地模拟疾病发展,观察窗口期更长。
NB发生后,一方面由于支配下尿路的神经受损,尿流动力学异常,肾盂内压力升高,压迫肾小球毛细血管袢,引起肾脏缺血。另一方面,膀胱持续高压,尿路梗阻,肾髓质和间质受损,炎症和促纤维化因子不断产生,导致肾间质纤维化的发生[12]。目前,关于NB诱导肾纤维化发生机制的研究并不多。本研究Western印迹结果显示,随离断时间延长,AT1、TGF-βR1、pSmad2、collagenⅠ和collagenⅢ蛋白表达增加。我们推测:大鼠肾脏缺血后,肾素-血管紧张素系统激活,AT1表达增加,而TGF-β1是AngⅡ/AT1下游靶分子[13-14]。TGF-β1活化后,与TGF-βR1结合,形成复合物,该复合物作用于R-Smads蛋白C端丝氨酸残基,使Smad2表达增加且磷酸化,并与Smad4形成转录复合体,进入细胞核内,以调节胶原和纤维蛋白基因,增加Ⅰ型和Ⅲ型胶原蛋白的表达,引发肾间质纤维化[15]。免疫组化显示AT1、TGF-βR1、pSmad2、Smad6在肾脏的分布具有一致性。以上结果提示AngⅡ/TGF-β/Smads通路可能参与NB诱导的肾纤维化。这与AngⅡ/TGF-β/Smads信号通路参与压力引起膀胱输尿管反流(反流性肾病)导致肾脏纤维化的报道一致[16-17]。然而,通过AT1特异性拮抗剂抑制该信号通路的介导,是否能延缓肾纤维化发生,仍需要进一步研究证实。
综上所述,在双侧脊神经切断的NB模型中,逼尿肌瘫痪引起膀胱内高压,持续的膀胱压力增高引起肾积水、肾脏持续性高压,激活AngⅡ/TGF-β/Smads信号通路,collagenⅠ和collagenⅢ表达增加,肾脏组织被纤维化组织取代。本研究为探索NB诱导肾纤维化的机制及干预药物的开发提供了实验基础。

References

[1]
Chu DI, Liu T, Patel P, et al. Kidney function surveillance in the national spina bifida patient registry: a retrospective cohort study[J]. J Urol, 2020, 204(3): 578-586. DOI: 10.1097/JU.0000000000001010.
Chronic kidney disease affects 25% to 50% of patients with spina bifida. Guidelines recommend kidney function surveillance in these patients but practice patterns are unknown. Variations in kidney function surveillance were assessed in patients with spina bifida based on the hypothesis that the treating clinic and spina bifida type would be associated with kidney function surveillance.A retrospective cohort study was conducted of U.S. patients in the National Spina Bifida Patient Registry from 2013 to 2018. Followup was anchored at the 2013 visit. Participants with either an outcome event within 2 years of followup or more than 2 years of followup without an outcome event were included. Primary outcome was kidney function surveillance, defined as at least 1 renal ultrasound and serum creatinine within 2 years of followup. Primary exposures were clinic and spina bifida type, which were analyzed with covariates including sociodemographic and clinical characteristics in logistic regression models for their association with the outcome. Sensitivity analyses were performed using different kidney function surveillance definitions.Of 8,351 patients 5,445 were included with a median followup of 3.0 years. Across 23 treating clinics kidney function surveillance rates averaged 62% (range 6% to 100%). In multivariable models kidney function surveillance was associated with treating clinic, younger patient age, functional lesion level, nonambulatory status and prior bladder augmentation. Treating clinic remained a significant predictor of kidney function surveillance in all sensitivity analyses.Within the National Spina Bifida Patient Registry wide variation exists in practice of kidney function surveillance across treating clinics despite adjustment for key patient characteristics.
[2]
Wyndaele JJ. The management of neurogenic lower urinary tract dysfunction after spinal cord injury[J]. Nat Rev Urol, 2016, 13(12): 705-714. DOI: 10.1038/nrurol.2016.206.
[3]
Kroll P, Zachwieja J. Complications of untreated and ineffectively treated neurogenic bladder dysfunctions in children: our own practical classification[J]. Eur Rev Med Pharmacol Sci, 2016, 20(7): 1229-1237.
[4]
Li YL, Wen JJ, Wen YB, et al. Reconstruction of bladder function and prevention of renal deterioration by means of end-to-side neurorrhaphy in rats with neurogenic bladder[J]. Neurourol Urodyn, 2018, 37(4): 1272-1280. DOI: 10.1002/nau.23456.
To investigate the feasibility of restoring bladder function and prevention of renal deterioration by neurorrhaphy in rats with neurogenic bladder (NB).
[5]
He YL, Chen Y, Wen YB, et al. Changes in bladder function with time following cystostomy in rats[J]. Neurourol Urodyn, 2020, 39(2): 565-575. DOI: 10.1002/nau.24241.
To investigate bladder function patterns following cystostomy and determine the best time window for cystometric evaluation of bladder function in conscious rats.
[6]
Wolf JS Jr, Rayala HJ, Humphrey PA, et al. In vivo comparison of electrosurgical vaporization electrodes[J]. J Endourol, 1997, 11(1): 83-87. DOI: 10.1089/end.1997.11.83.
To determine the acute tissue effects of endoscopic electrosurgery using different electrodes, smooth ball, smooth bar, vertically grooved bar, and horizontally fluted bar electrodes were applied to the epithelial surface of porcine bladders in vivo with electrosurgical cutting current supplied at 100, 150, and 200 W. A single pass was made on the surface of the tissue under endoscopic control with sorbitol irrigation using an excursion rate of 5 mm/sec. Each electrode was tested five times at each setting. The depths of electrosurgical vaporization and coagulation were measured by a pathologist blinded to the electrode and power setting. Depth of vaporization increased with the power setting of the generator and was greater with the non-smooth electrodes than the smooth electrodes. The depth of coagulation likewise was greater using the non-smooth electrodes but increased only minimally with increasing power settings. There were no differences in vaporization or coagulation depth between the small ball and smooth bar electrodes. The differences between the vertically grooved bar and horizontally fluted bar also were insignificant, except that in one-third of cases, the horizontally fluted bar created clefts undermining otherwise-undamaged areas of tissue. Non-smooth electrosurgical electrodes produce more vaporization and coagulation than smooth electrodes at a given power setting and therefore may be preferred for endoscopic applications. For use in tissues where precise control is required, the vertically grooved bar may be superior to the horizontally fluted bar because it provides similar vaporization and coagulation with a more uniform tissue effect.
[7]
Sievert KD, Amend B, Roser F, et al. Challenges for restoration of lower urinary tract innervation in patients with spinal cord injury: a European single-center retrospective study with long-term follow-up[J]. Eur Urol, 2016, 69(5): 771-774. DOI: 10.1016/j.eururo.2015.11.016.
[8]
Manack A, Motsko SP, Haag-Molkenteller C, et al. Epidemiology and healthcare utilization of neurogenic bladder patients in a US claims database[J]. Neurourol Urodyn, 2011, 30(3): 395-401. DOI: 10.1002/nau.21003.
To characterize the patient profile, medication utilization, and healthcare encounters of patients with neurogenic bladder dysfunction related to incontinence.
[9]
Salehi-Pourmehr H, Hajebrahimi S, Rahbarghazi R, et al. Stem cell therapy for neurogenic bladder dysfunction in rodent models: a systematic review[J]. Int Neurourol J, 2020, 24(3): 241-257. DOI: 10.5213/inj.2040058.029.
Neurogenic bladder dysfunction (NGB) has an impact on the quality of life, which made it an important research subject in preclinical studies. The present review investigates the effect of stem cell (SC) therapy on bladder functional recovery after the onset of spinal cord injury (SCI), multiple sclerosis (MS), Parkinson disease (PD), and stroke in rodent models.All experiments evaluated the regenerative potential of SC on the management of NGB in rodent models up to June 2019, were included. From 1,189 relevant publications, 20 studies met our inclusion criteria of which 15 were conducted on SCI, 2 on PD, 2 on stroke, and 1 on MS in the rodent models. We conducted a meta-analysis on SCI experiments and for other neurological diseases, detailed urodynamic findings were reported.The common SC sources used for therapeutical purposes were neural progenitor cells, bone marrow mesenchymal SCs, human amniotic fluid SCs, and human umbilical cord blood SCs. There was a significant improvement of micturition pressure in both contusion and transaction SCI models 4 and 8 weeks post-SC transplantation. Residual urine volume, micturition volume, and bladder capacity were improved 28 days after SC transplantation only in the transaction model of SCI. Nonvoiding contraction recovered only in 56 days post-cell transplantation in the contusion model.Partial bladder recovery has been evident after SC therapy in SCI models. Due to limitations in the number of studies in other neurological diseases, additional studies are necessary to confirm the detailed mechanism for bladder recovery.
[10]
程茜, 王玉. 抑制Src激酶可减轻单侧输尿管梗阻小鼠肾间质纤维化[J]. 中华肾脏病杂志, 2017, 33(8): 609-615. DOI: 10.3760/cma.j.issn.1001-7097.2017.08.008.
[11]
马园园, 刘成海, 陶艳艳. 肾纤维化动物模型特点与研究进展[J]. 中国实验动物学报, 2018, 26(3): 398-403. DOI: 10.3969/j.issn.1005-4847.2018.03.020.
[12]
Zuo Y, Liu Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis[J]. Nephrology (Carlton), 2018, 23 Suppl 4: 38-43. DOI: 10.1111/nep.13472.
[13]
Lu G, Xu S, Peng L, et al. Angiotensin II upregulates Kv1.5 expression through ROS-dependent transforming growth factor-beta1 and extracellular signal-regulated kinase 1/2 signalings in neonatal rat atrial myocytes[J]. Biochem Biophys Res Commun, 2014, 454(3): 410-416. DOI: 10.1016/j.bbrc.2014.10.088.
[14]
Border WA, Noble NA. Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis[J]. Hypertension, 1998, 31(1 Pt 2): 181-188. DOI: 10.1161/01.hyp.31.1.181.
Overproduction of transforming growth factor-beta clearly underlies tissue fibrosis in numerous experimental and human diseases. Transforming growth factor-beta's powerful fibrogenic action results from simultaneous stimulation of matrix protein synthesis, inhibition of matrix degradation, and enhanced integrin expression that facilitates matrix assembly. In animals, overexpression of transforming growth factor-beta by intravenous injection, transient gene transfer, or transgene insertion has shown that the kidney is highly susceptible to rapid fibrosis. The same seems true in human disease, where excessive transforming growth factor-beta has been demonstrated in glomerulonephritis, diabetic nephropathy, and hypertensive glomerular injury. A possible explanation for the kidney's particular susceptibility to fibrosis may be the recent discovery of biologically complex interactions between the renin-angiotensin system and transforming growth factor-beta. Alterations in glomerular hemodynamics can activate both the renin-angiotensin system and transforming growth factor-beta. Components of the renin-angiotensin system act to further stimulate production of transforming growth factor-beta and plasminogen activator inhibitor leading to rapid matrix accumulation. In volume depletion, transforming growth factor-beta is released from juxtaglomerular cells and may act synergistically with angiotensin II to accentuate vasoconstriction and acute renal failure. Interaction of the renin-angiotensin system and transforming growth factor-beta has important clinical implications. The protective effect of inhibition of the renin-angiotensin system in experimental and human kidney diseases correlates closely with the suppression of transforming growth factor-beta production. This suggests that transforming growth factor-beta, in addition to blood pressure, should be a therapeutic target. Higher doses or different combinations of drugs that block the renin-angiotensin system or entirely new drug strategies may be needed to achieve a greater antifibrotic effect.
[15]
Howard PS, Kucich U, Coplen DE, et al. Transforming growth factor-beta1-induced hypertrophy and matrix expression in human bladder smooth muscle cells[J]. Urology, 2005, 66(6): 1349-1353. DOI: 10.1016/j.urology.2005.06.124.
To determine whether transforming growth factor beta (TGF-beta) could activate hyperplasia, hypertrophy, and altered collagen expression in human detrusor smooth muscle cells (SMCs).Human bladder SMCs were treated in vitro with TGF-beta1 and analyzed for changes in both proliferative and hypertrophic responses by cell number and volume measurements, as well as for alterations in extracellular matrix gene and protein expression by Northern blot and enzyme-linked immunosorbent assay.Proliferation of bladder SMCs was refractory to TGF-beta1, whereas the cells became hypertrophic upon TGF-beta1 treatment. The interstitial collagens, types I and III, were increased significantly in TGF-beta1-treated cultures in a dose-dependent manner. These increases were blocked in the presence of TGF-beta1 neutralizing antibody and also when cultures were treated with the protein synthesis inhibitor cycloheximide, indicating that new protein synthesis is necessary for upregulation of the interstitial collagens. Messenger ribonucleic acid transcripts for both the COL1A1 and COL3A1 genes were elevated at 4, 6, and 24 hours in TGF-beta1-treated cultures, preceding the expression of the collagenous protein, showing that TGF-beta1 effects on bladder smooth muscle occur, at least in part, at the transcriptional level.These results indicate that human bladder SMCs have the potential to mediate both a hypertrophic and fibrotic response upon TGF-beta1 stimulation.
[16]
Vega-P JM, Pascual LA. High-pressure bladder: an underlying factor mediating renal damage in the absence of reflux?[J]. BJU Int, 2001, 87(6): 581-584. DOI: 10.1046/j.1464-410x.2001.00082.x.
[17]
Ross SS. Predicting risk of chronic renal disease in children with vesicoureteral reflux-how good or bad are we doing?[J]. J Urol, 2016, 195(4 Pt 1): 829-830. DOI: 10.1016/j.juro.2016.01.062.

Funding

National Natural Science Foundation of China(81770725)
National Key Research and Development Program of China(2018YFC1311202)
PDF(4624 KB)

1136

Accesses

0

Citation

Detail

Sections
Recommended

/