Expert consensus on diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infection with acute kidney injury

Expert Team of Chinese Society of Nephrology

PDF(3777 KB)
Chinese Journal of Nephrology ›› 2020, Vol. 36 ›› Issue (3) : 242-246. DOI: 10.3760/cma.j.cn441217-20200222-00035
Expert Consensus

Expert consensus on diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infection with acute kidney injury

Author information +
History +

Abstract

Cite this article

Download Citations
Expert Team of Chinese Society of Nephrology. Expert consensus on diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infection with acute kidney injury[J]. Chinese Journal of Nephrology, 2020, 36(3): 242-246. DOI: 10.3760/cma.j.cn441217-20200222-00035.
新型冠状病毒肺炎(COVID-19)是新发现的由2019新型冠状病毒(2019-nCoV)感染引起的,以急性呼吸系统病变为主要表现,同时可累及肾脏、心血管、消化、血液、神经等多系统器官的一类急性传染病。该病传染性强,临床表现复杂多样,以呼吸系统病变为主要特征,而肾脏是重要的肺外受累器官之一,其对患者的预后有十分重要的影响。了解COVID-19合并急性肾损伤(acute kidney injury,AKI)对于提高COVID-19抢救成功率具有十分重要的意义。

一、 COVID-19合并AKI的流行病学

2019年12月,COVID-19在中国湖北省武汉市暴发,并迅速蔓延至全国乃至境外30多个国家和地区,被国家列入乙类并按甲类管理的传染病[1]。2020年2月11日其致病病毒所引发的疾病被世界卫生组织(WHO)命名为“COVID-19”[2]。该病的病毒基因特征与蝙蝠SARS样冠状病毒(CoV)有85%以上的同源性,主要通过呼吸道飞沫和接触传播,也可能通过气溶胶和消化道粪-口等途径传播。人群对该病毒普遍易感,呈聚集性发病。潜伏期与传染性重症急性呼吸综合征(severe acute respiratory syndrome,SARS,惯称“非典型肺炎”)、中东呼吸综合征(Middle East respiratory syndrome,MERS)类似,SARS平均潜伏期为4.6 d(95%CI 3.8~5.8 d),MERS约为2~14 d[1,3-4]。据中国COVID-19疫情数据报告,截至2020年2月19日24时,中国内地(大陆)累计确诊病例74 576例,其中重症病例11 864例,占15.9%,死亡2 118例,死亡率为2.8%[5]。随着研究深入,2019-nCoV的基本传染数(the basic reproductive number,R0)也存在波动,截至2020年1月24日为2.2~3.6[6-9],较SARS-CoV(R0: 0.9~2.7)、MERS-CoV(R0: 2~3)有更强的传染性。
冠状病毒感染后引起的AKI并不少见,主要表现为肾小管损伤。有研究者在536例SARS病例中发现,AKI患者占6.7%(36/536),病死率高达91.7%(33/36)[10-11]。在MERS病例中发现,合并AKI患者的病死率为67%[12]。另外,在1项99例COVID-19患者的研究中,7例(7.1%)出现了不同程度的肾损伤,伴有血肌酐(serum creatinine,Scr)和(或)尿素氮(blood urea nitrogen,BUN)升高[9];另1项报道中,138例患者中有5例发生了AKI(3.7%),2例接受了肾脏替代治疗[13]。最近Guan等[14]报道的1 099例COVID-19患者中,AKI发生率为0.5%,在173例重症患者中5例出现了AKI(2.9%)。Cheng等[15]的最新研究资料显示,单中心连续住院的710例确诊COVID-19患者中,AKI发生率为3.2%。上述数据存在一定差异,可能与样本量以及患者偏倚有关,但总体上COVID-19患者AKI发生率似要低于SARS和MERS。AKI的确切发生率仍有待今后更大样本量资料证实。

二、 AKI的发病机制

冠状病毒感染致AKI发生的机制仍不十分清楚,根据现有的研究,可能是由病毒直接介导,也可能由异常免疫反应释放的细胞因子和其他因素间接引起。
1. 病毒直接介导: 冠状病毒的器官靶向性损伤主要由受体结合蛋白和细胞表面受体的结合能力决定。目前已鉴定出两种主要冠状病毒的功能受体:血管紧张素转换酶2(angiotensin converting enzyme 2,ACE2)和二肽基肽酶4(dipeptidyl peptidase 4,DPP4)。(1)ACE2:它能有效结合SARS病毒S蛋白的S1结构域,因此认为ACE2是SARS-CoV的功能性受体[16]。ACE2主要表达在肺、肾脏、心脏、回肠等组织,在肾脏近端肾小管表达较强,而肾小球表达较弱[17]。在被感染患者的肾组织中SARS-CoV聚合酶链反应(PCR)也发现了SARS-CoV[18]。另外,研究发现,2019-nCoV全基因组序列与SARS-CoV同源性高达79.5%,ACE2是两种病毒共同靶向受体[19],而ACE2蛋白与2019-nCoV的亲和力是SARS-CoV的10~20倍[20],因此推测COVID-19也可能由ACE2或者其他受体靶向感染,并介导AKI发生,但其具体机制尚有待进一步阐明。(2)DPP4:DPP4被认为是MERS-CoV的功能性受体[21],在肾脏、小肠和肺等组织高表达,也是肾小管刷状缘膜蛋白之一[22],同时也存在于肾小球足细胞和毛细血管中,因而不能排除其对肾组织直接靶向攻击作用。
2. 免疫激活介导:感染导致免疫激活后,大量促炎因子的释放也可能是导致AKI发生的重要原因之一。SARS-CoV和MERS-Cov感染会导致炎性因子和趋化因子明显上调[4],主要是通过巨噬细胞M1亚型释放趋化因子、促炎细胞因子和诱导型一氧化氮合酶,形成细胞毒性过氧亚硝酸盐,介导肾脏损伤。另外,树突状细胞则释放肿瘤坏死因子α(TNF-α)进一步促进炎性反应[23]。最新发现,细胞因子风暴综合征(cytokine storm syndrome,CSS)在各种感染介导的多器官功能衰竭中发挥重要作用,在机体免疫反应失控下,通过激活细胞因子级联反应,释放大量细胞因子,从而引起全身性炎性反应、高铁蛋白血症、血流动力学失衡、休克、弥漫性血管内凝血和多器官功能衰竭。CSS也是引起急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)和多器官衰竭的重要原因[6]。临床上COVID-19患者体内TNF-α、白细胞介素(IL)-1、IL-6、IL-12、干扰素α(IFN-α)等明显升高,提示其可能存在CSS现象。陈蕾等[24]报道的29例COVID-19患者IL-6、粒细胞-巨噬细胞集落刺激因子(GM-CSF)等明显上调,其机制可能是COVID-19通过激活T细胞,释放IL-6,而GM-CSF则通过激活单核细胞进一步释放炎性因子,放大免疫效应并导致AKI。
3. 其他因素: 重症和危重症COVID-19患者常有低血压、消化道丢失液体导致的脱水、低氧血症、电解质酸碱平衡紊乱、心功能不全等;去甲肾上腺素、多种抗病毒药物、抗生素等的使用、患者高龄以及糖尿病、高血压等基础性疾病,这些因素均可能诱导AKI发生。

三、 临床表现

1. 一般表现: 2019-nCoV感染主要引起呼吸、心血管、消化、泌尿、神经等多系统器官疾病[6]。临床以发热、干咳、乏力为主要表现。少数患者伴有鼻塞、流涕、咽痛、肌痛和腹泻等症状。重症患者出现高热、呼吸急促、气短、发绀、低氧血症、低血压等。
2. 肾脏表现: 患者主要表现蛋白尿、血尿、少尿、BUN和Scr升高以及肾脏影像学改变,部分患者发展为AKI[9]。实验室检查可见BUN、Scr升高,CT提示肾脏大小或结构改变[25]。一项对59例COVID-19患者的早期研究发现,34%患者在入院第1天出现了蛋白尿;病程中,63%患者出现了蛋白尿;27%患者的BUN水平升高,2/3死亡患者BUN水平较高,3例死亡患者Scr水平达200 μmol/L以上;27例肾脏CT值低于正常(35 HU),可能与肾脏炎症和水肿有关[26]。另外1篇文献显示,COVID-19患者中约3.6%出现AKI,接受连续性肾脏替代治疗(continuous renal replacement therapy,CRRT)的比例为1.45%,而ICU中患者接受CRRT比例高达5.56%[13]。Cheng等[15]单中心710例COVID-19住院患者的资料显示,入院时44%患者有蛋白尿和血尿,26.9%有血尿,14.1% Scr升高,AKI发生率为3.2%,AKI是死亡的独立危险因素。
3. CSS: 表现为持续发热、肝脾淋巴结肿大、血流动力学不稳定、休克、皮疹、弥漫性血管内凝血和多器官功能衰竭,病情常迅速进展、恶化。
4. 实验室检查: 发病早期外周血白细胞总数正常或减少,淋巴细胞计数减少,部分患者可出现肝功能损伤,乳酸脱氢酶、肌酶和肌红蛋白增高;部分危重者可见肌钙蛋白增高。多数患者C反应蛋白(CRP)和红细胞沉降率升高,降钙素原正常。严重者D-二聚体升高、外周血淋巴细胞进行性减少。重型、危重型患者常有炎性因子升高等。影像学检查示早期多发小斑片影及间质改变,进而发展为双肺多发毛玻璃影、浸润影,严重者可出现肺实变,胸腔积液少见。CSS的主要实验室异常有:CRP增高、高铁蛋白血症、白细胞和血小板减少、骨髓中有噬血细胞、血液中多种细胞因子(如IL-2、IL-6、IL-10、IL-17、粒细胞集落刺激因子、γ干扰素诱导蛋白10、单核细胞趋化蛋白1、TNF-α等)增高。

四、 诊断

2019-nCoV感染的诊断主要依据临床表现、流行病学史以及实验室检查(包括血象、胸部CT及病原学分析等),主要确诊依据是实时荧光PCR检测2019-nCoV核酸阳性,或相关病毒基因测序与已知的2019-nCoV高度同源[1]。但目前检测方法存在一定的假阴性率,此可能与采样、检测试剂灵敏度低等有关,更灵敏的分子检测技术仍有待研发。
COVID-19并发AKI的诊断依据主要参考改善全球肾脏病预后组织(KDIGO)标准[6]。在确诊2019-nCoV感染的基础上,根据Scr升高水平和(或)尿量对AKI进行判断和分期,即48 h内Scr升高或超过26.5 μmol/L;Scr升高超过基线的1.5倍,确认或推测发生于7 d内;尿量<0.5 ml·kg-1·h-1,且持续6 h以上(符合以上情况之一即可诊断AKI)[27]

五、 治疗

COVID-19合并AKI的治疗包括:一般治疗、抗病毒疗法、肾脏和其他支持治疗等。
1. 一般治疗: 所有COVID-19患者应在隔离和防护条件好的定点医院隔离治疗,危重患者应尽早收入ICU治疗。
一般治疗主要包括休息、对症和营养支持、维持内环境稳定及生命体征平稳,及时进行实验室监测等,必要时吸氧。发热是患者的常见症状,在使用非甾体抗炎药(nonsteroidal anti-inflammatory drugs,NSAIDs)退热治疗时,应严格掌握适应证,并注意减少使用频度和剂量,适当多饮水,注意观察患者有效循环血容量,避免造成肾功能的进一步损害。重型及危重病例应积极防治并发症,维持器官功能和循环支持,预防继发感染,必要时给予高流量氧疗、机械通气、肺复张治疗。重度ARDS患者,尽快考虑体外肺膜氧合(extracorporeal membrance oxygenation,ECMO)治疗。
此外,稳定患者情绪、缓解患者焦虑,及时进行心理状态评估,给予心理疏导等,可帮助树立战胜疾病的信心。
2. 抗病毒治疗: 目前针对2019-nCoV尚无确认有效的抗病毒治疗药物。可能有效的方案包括:α干扰素雾化吸入、洛匹那韦/利托那韦等,后两种药物是人免疫缺陷病毒1(HIV-1)的蛋白酶抑制剂,它们在2019-nCoV感染中的治疗价值有待研究评估(ChiCTR2000029308)。因洛匹那韦和利托那韦经肾脏清除率低,肾功能不全的患者无需调整剂量。这两种药物均具有很强的蛋白结合能力,因此血液透析或腹膜透析不会显著影响其清除。此外,瑞德西韦作为一种新型核苷酸前体药物(GS-5734)能通过nsp14-ExoN有效抑制冠状病毒复制,在MERS-CoV、SARS-CoV感染治疗中有效[28],但其在COVID-19患者中的疗效如何尚在临床研究中(NCT04252664、NCT04257656)。值得注意的是,不建议同时应用3种及以上抗病毒药物,出现不可耐受的不良反应时应停止使用相关药物。
3. 血液净化治疗: 对重症COVID-19合并AKI、全身性炎性反应综合征(SIRS)、MODS、CSS等患者,及时开展血液净化等肾脏替代疗法具有非常重要的意义。血液净化技术包括血浆置换、吸附、灌流、血液/血浆滤过等,特别是CRRT在既往SARS、MERS及其他脓毒血症的抢救治疗中曾发挥重要作用[29-30]。研究证明,脓毒症采用高容量血液滤过(high-volume hemofiltration,HVH)治疗6 h后,IL-6水平显著降低(P=0.025),全身性器官衰竭评分(sequential organ failure assessment,SOFA)改善[31],提示CRRT在抢救COVID-19重症患者中可能发挥十分重要的作用。国家卫生健康委COVID-19诊疗方案(试行第六版)建议:对有高炎性反应的重危患者,有条件时可考虑使用血浆置换、吸附、灌流、血液/血浆滤过等体外血液净化技术[1]。我们认为,由于SIRS、ARDS、CSS等伴有多种细胞因子大量释放,临床过程凶险,是疾病进展的重要机制,依据血液净化技术原理,早期积极启动以清除细胞因子为目的的血液净化疗法(如选用血浆置换、免疫吸附或CRRT等)对部分重症患者的抢救可能具有十分重要的意义,值得在临床实践中进行探索。
4. 其他疗法: 恢复期血浆治疗在SARS-CoV感染的患者早期应用可以降低病死率[32]。但恢复期血浆的获取和采集时机都在摸索过程中,如果没有高滴度的中和抗体,不能确保疗效[33]。在COVID-19重症患者中现已有部分患者取得初步疗效,但有关经验尚需进一步积累。
磷酸氯喹既往主要用于治疗疟疾、结缔组织病和光敏感性疾病等,最近发现其对COVID-19有一定疗效,但确切作用机制还不清楚。
单克隆抗体在治疗MERS-CoV感染中已得到验证[34]。但针对COVID-19的单抗尚在研发中。“托珠单抗”作为针对IL-6受体的单抗,正在进行前期临床试验(ChiCTR2000029765)。
糖皮质激素,目前指南推荐根据患者呼吸困难程度、胸部影像学进展情况,可酌情使用3~5 d,剂量相当于甲泼尼松龙(<1~2 mg· kg-1·d-1[1]。虽然糖皮质激素在SARS患者中可降低病死率、缩短住院时间[35],但糖皮质激素可能会抑制病毒清除,延长病毒血症的持续时间[36]。使用糖皮质激素治疗COVID-19的确切疗效尚缺乏严格设计的试验评估,故临床应用时应谨慎。

六、 结语

COVID-19是21世纪第三个由冠状病毒感染引发,给人类社会带来重大公共卫生安全威胁的疾病。COVID-19合并AKI是我们需要积极关注的临床问题,它不仅增加患者的病死率,还可能导致患者进一步发展为慢性肾脏病。对于COVID-19并发AKI,目前无论是基础发病机制还是临床诊疗研究都才刚刚开始,需要积极探索、多学科协作攻关。
中华医学会肾脏病学分会专家组
组长:陈江华
顾问:余学清
成员(按拼音排序):蔡广研、陈崴、丁小强、韩飞、郝传明、何娅妮、胡伟新、胡昭、蒋更如、焦军东、李贵森、李荣山、李文歌、李雪梅、林洪丽、刘必成、刘章锁、毛永辉、倪兆慧、孙林、王俭勤、徐钢、姚丽、查艳、张春、赵明辉
执笔人:刘必成

References

[1]
中华人民共和国卫生健康委办公厅. 新型冠状病毒肺炎诊疗方案(试行第六版)[EB/OL]. (2020-02-18)[2020-02-22]. http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df351d7da8aefc2.shtml.
[2]
World Health Organization. World experts and funders set priorities for COVID-19 research[N/OL]. (2020-02-12)[2020-02-22]. https://www.who.int/news-room/detail/12-02-2020-world-experts-and-funders-set-priorities-for-covid-19-research.
[3]
Hui D, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features[J]. Infect Dis Clin North Am, 2019, 33(4): 869-889. DOI: 10.1016/j.idc.2019.07.001.
[4]
Arabi YM, Balkhy HH, Hayden FG, et al. Middle East Respiratory Syndrome[J]. N Engl J Med, 2017, 376(6): 584-594. DOI: 10.1056/NEJMsr1408795.
[5]
中华人民共和国卫生健康委员会. 截至2月19日24时新型冠状病毒肺炎疫情最新情况[EB/OL].(2020-02-20)[2020-02-20]. http://www.nhc.gov.cn/xcs/yqtb/202002/4dcfcb9b74ea4a408fc1d56d4db61f93.shtml.
[6]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506. DOI: 10.1016/S0140-6736(20)30183-5.
[7]
Zhao S, Lin Q, Ran J, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak[J]. Int J Infect Dis, 2020, 92: 214-217. DOI: 10.1016/j.ijid.2020.01.050.
[8]
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study[J]. Lancet, 2020, 395(10225):689-697. DOI: 10.1016/S0140-6736(20)30260-9.
[9]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study[J]. Lancet, 2020, 395(10223):507-513. DOI: 10.1016/S0140-6736(20)30211-7.
[10]
Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome[J]. Kidney Int, 2005, 67(2): 698-705. DOI: 10.1111/j.1523-1755. 2005.67130.x.
Severe acute respiratory syndrome (SARS) is a newly emerged infection from a novel coronavirus (SARS-CoV). Apart from fever and respiratory complications, acute renal impairment has been observed in some patients with SARS. Herein, we describe the clinical, pathologic, and laboratory features of the acute renal impairment complicating this new viral infection.We conducted a retrospective analysis of the plasma creatinine concentration and other clinical parameters of the 536 SARS patients with normal plasma creatinine at first clinical presentation, admitted to two regional hospitals following a major outbreak in Hong Kong in March 2003. Kidney tissues from seven other patients with postmortem examinations were studied by light microscopy and electron microscopy.Among these 536 patients with SARS, 36 (6.7%) developed acute renal impairment occurring at a median duration of 20 days (range 5-48 days) after the onset of viral infection despite a normal plasma creatinine level at first clinical presentation. The acute renal impairment reflected the different prerenal and renal factors that exerted renal insult occurring in the context of multiorgan failure. Eventually, 33 SARS patients (91.7%) with acute renal impairment died. The mortality rate was significantly higher among patients with SARS and acute renal impairment compared with those with SARS and no renal impairment (91.7% vs. 8.8%) (P < 0.0001). Renal tissues revealed predominantly acute tubular necrosis with no evidence of glomerular pathology. The adjusted relative risk of mortality associated with the development of acute renal impairment was 4.057 (P < 0.001). By multivariate analysis, acute respiratory distress syndrome and age were the most significant independent risk factors predicting the development of acute renal impairment in SARS.Acute renal impairment is uncommon in SARS but carries a high mortality. The acute renal impairment is likely to be related to multi-organ failure rather than the kidney tropism of the virus. The development of acute renal impairment is an important negative prognostic indicator for survival with SARS.
[11]
Pacciarini F, Ghezzi S, Canducci F, et al. Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein[J]. J Virol, 2008, 82(11): 5137-5144. DOI: 10.1128/JVI.00096-08.
Severe acute respiratory syndrome (SARS) is a systemic disease characterized by both lung pathology and widespread extrapulmonary virus dissemination causing multiple organ injuries. In this regard, renal dysfunction is an ominous sign in patients with SARS. Indeed, clusters of SARS coronavirus (SARS-CoV) particles have been detected in the cytoplasm of renal tubular epithelial cells in postmortem studies, explaining the presence of infectious virus in the urine of SARS patients. In order to investigate the potential SARS-CoV kidney tropism, we have evaluated the susceptibility of human renal cells of tubular and glomerular origin to in vitro SARS-CoV infection. Immortalized cultures of differentiated proximal tubular epithelial cells (PTEC), glomerular mesangial cells (MC), and glomerular epithelial cells (podocytes) were found to express the SARS-CoV receptor angiotensin-converting enzyme 2 on their surface. Productive infection, however, occurred only in PTEC but not in glomerular cells. A transient infection with poor virus production was observed in MC, whereas podocytes were not permissive to SARS-CoV infection. In contrast to the cytopathic infection of the Vero E6 cell line, SARS-CoV did not cause overt cytopathic effects in PTEC or MC. Of interest, PTEC, but not MC, maintained stable levels of SARS-CoV production in serial subcultures, suggesting a persistent state of infection. In this regard, a SARS-CoV variant with increased replication capacity in PTEC was selected after four serial subculture passages. This SARS-CoV variant acquired a single nonconservative amino acid change from glutamic acid (E) to alanine (A) at position 11 in the viral membrane (M) protein. The E11A point mutation was sufficient for enhanced SARS-CoV replication and persistence in PTEC when introduced in a SARS-CoV recombinant infectious clone. These findings indicate that human PTEC may represent a site of SARS-CoV productive and persistent replication favoring the emergence of viral variants with increased replication capacity, at least in these kidney cells.
[12]
Eckerle I, Müller MA, Kallies S, et al. In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) Coronavirus infection[J]. Virol J, 2013, 10: 359. DOI: 10.1186/1743-422X-10-359.
[13]
Wang D, Hu B, Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China[J]. JAMA, 2020. DOI: 10.1001/jama.2020.1585. [Published online ahead of print Feb 7, 2020].
[14]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020. DOI: 10.1056/NEJMoa2002032. [Published online ahead of print Feb 28, 2020].
[15]
Cheng Y, Luo R, Wang K, et al. Kidney impairment is associated with in-hospital death of COVID-19 patients[J/OL]. medRxiv, 2020[2020-02-22]. DOI: https://doi.org/10.1101/2020.02.18.20023242. [Published online ahead of print Feb 20, 2020].
[16]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426(6965): 450-454. DOI: 10.1038/nature02145.
[17]
Santos RA, Ferreira AJ, Verano-Braga T, et al. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system[J]. J Endocrinol, 2013, 216(2): R1-R17. DOI: 10.1530/JOE-12-0341.
[18]
Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study[J]. Lancet, 2003, 361(9371):1767-1772. DOI: 10.1016/s0140-6736(03)13412-5.
[19]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020. DOI: 10.1038/s41586-020-2012-7.
[20]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, pii: eabb2507. DOI: 10.1126/science.abb2507.
[21]
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC[J]. Nature, 2013, 495(7440): 251-254. DOI: 10.1038/nature 12005.
[22]
Kenny AJ, Booth AG, George SG, et al. Dipeptidyl peptidase IV, a kidney brush-border serine peptidase[J]. Biochem J, 1976, 157(1): 169-182. DOI: 10.1042/bj1570169.
Dipeptidyl peptidase IV, an enzyme that releases dipeptides from substrates with N-terminal sequences of the forms X-Pro-Y or X-Ala-Y, was purified 300-fold from pig kidney cortex. The kidney is the main source of the enzyme, where it is one of the major microvillus-membrane proteins. Several other tissues contained demonstrable activity against the usual assay substrate glycylproline 2-naphthylamide. In the small intestine this activity was greatly enriched in the microvillus fraction. In all tissues examined, the activity was extremely sensitive to inhibition by di-isopropyl phosphorofluoridate (Dip-F), but relatively resistant to inhibition by phenylmethylsulphonyl fluoride. It is a serine proteinase which may be covalently labelled with [32P]Dip-F, and is the only enzyme of this class in the microvillus membrane. The apparent subunit mol.wt. estimated by sodium dodecyl-sulphate/polyacrylamide-gel electrophoresis and by titration with [32P]Dip-F was 130 000. Gel-filtration and sedimentation-equilibrium methods gave values in the region of 280 000, which is consistent with a dimeric structure, a conclusion supported by electron micrographs of the purified enzyme. Among other well-characterized serine proteinases, this enzyme is unique in its membrane location and its large subunit size. Investigation of the mode of attack of the peptidase on oligopeptides revealed that it could hydrolyse certain N-blocked peptides, e.g. Z-Gly-Pro-Leu-Gly-Pro. In this respect it is acting as an endopeptidase and as such may merit reclassification and renaming as microvillus-membrane serine peptidase.
[23]
Singbartl K, Formeck CL, Kellum JA. Kidney-immune system crosstalk in AKI[J]. Semin Nephrol, 2019, 39(1): 96-106. DOI: 10.1016/j.semnephrol.2018.10.007.
Acute kidney injury (AKI) now is recognized as a systemic disease. It occurs frequently in critically ill patients and has profound effects on morbidity and mortality. Recent research efforts have shown a bidirectional interplay between AKI and the immune system. Both innate and adaptive immune responses mediate renal injury as well as recovery from AKI. Dendritic cells, monocytes/macrophages, neutrophils, T lymphocytes, and B lymphocytes all play specific roles in the development of AKI. M2 macrophages and regulatory T cells also are pivotal in controlling inflammation, tissue remodeling, and repair after AKI. Conversely, existing evidence also suggests that increased production and decreased clearance of cytokines as well as dysfunction of immune cells, in particular neutrophils, can contribute to immune dysfunction and impaired bacterial clearance during AKI. Clinical data indicate that AKI is a risk factor for infections after various forms of critical illness, including cardiac surgery, malignancies, or severe trauma. Available evidence does not suggest that standard renal replacement therapies improve outcome from AKI beyond control of fluid balance and azotemia. Thus, novel approaches likely will be necessary to prevent or treat AKI-induced dysregulation of the inflammatory response.Copyright © 2018. Published by Elsevier Inc.
[24]
陈蕾, 刘辉国, 刘威, 等. 2019新型冠状病毒肺炎29例临床特征分析[J/OL]. 中华结核和呼吸杂志, 2020, 43[2020-02-22]. http://rs.yiigle.com/yufabiao/1180104.htm. DOI: 10.3760/cma.j.issn.1001-0939.2020.0005.[在线优先出版2020-02-06].
[25]
中华医学会肾脏病学分会专家组. 中华医学会肾脏病学分会关于血液净化中心(室)新型冠状病毒感染的防控建议[J]. 中华肾脏病杂志, 2020, 36(2): 82-84. DOI: 10.3760/cma.j.issn.1001-7097.2020.02.002.
鉴于目前覆盖全国的新型冠状病毒感染疫情,血液净化中心(室)人群相对密集、透析患者及陪同人员流动性大等情况,为有效预防透析患者、陪同人员及工作人员感染新型冠状病毒,保障透析治疗的顺利进行,避免疾病在血液净化中心发生和传播,中华医学会肾脏病学分会根据目前最新新型冠状病毒国家管理方案和国内外相关资料,结合血液净化标准操作规程(SOP)及临床实际操作,制定了关于血液净化中心(室)新型冠状病毒感染的防控建议,为全国血液净化中心在这一特殊时期的工作提供临床实践指导。
[26]
Anti-2019-nCoV Volunteers, Li Z, Wu M, et al. Caution on kidney dysfunctions of 2019-nCoV patients[J/OL]. medRxiv, 2020[2020-02-22]. DOI: https://doi.org/10.1101/2020.02.08. 20021212. [Published online ahead of print Feb 12, 2020].
[27]
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): c179-c184. DOI: 10.1159/000339789.
[28]
Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease[J]. mBio, 2018, 9(2): pii: e00221-18. DOI: 10.1128/mBio.00221-18.
[29]
Chu KH, Tsang WK, Tang CS, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome[J]. Kidney Int, 2005, 67(2): 698-705. DOI: 10.1111/j.1523-1755. 2005.67130.x.
Severe acute respiratory syndrome (SARS) is a newly emerged infection from a novel coronavirus (SARS-CoV). Apart from fever and respiratory complications, acute renal impairment has been observed in some patients with SARS. Herein, we describe the clinical, pathologic, and laboratory features of the acute renal impairment complicating this new viral infection.We conducted a retrospective analysis of the plasma creatinine concentration and other clinical parameters of the 536 SARS patients with normal plasma creatinine at first clinical presentation, admitted to two regional hospitals following a major outbreak in Hong Kong in March 2003. Kidney tissues from seven other patients with postmortem examinations were studied by light microscopy and electron microscopy.Among these 536 patients with SARS, 36 (6.7%) developed acute renal impairment occurring at a median duration of 20 days (range 5-48 days) after the onset of viral infection despite a normal plasma creatinine level at first clinical presentation. The acute renal impairment reflected the different prerenal and renal factors that exerted renal insult occurring in the context of multiorgan failure. Eventually, 33 SARS patients (91.7%) with acute renal impairment died. The mortality rate was significantly higher among patients with SARS and acute renal impairment compared with those with SARS and no renal impairment (91.7% vs. 8.8%) (P < 0.0001). Renal tissues revealed predominantly acute tubular necrosis with no evidence of glomerular pathology. The adjusted relative risk of mortality associated with the development of acute renal impairment was 4.057 (P < 0.001). By multivariate analysis, acute respiratory distress syndrome and age were the most significant independent risk factors predicting the development of acute renal impairment in SARS.Acute renal impairment is uncommon in SARS but carries a high mortality. The acute renal impairment is likely to be related to multi-organ failure rather than the kidney tropism of the virus. The development of acute renal impairment is an important negative prognostic indicator for survival with SARS.
[30]
Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with Middle East respiratory syndrome coronavirus infection[J]. Ann Intern Med, 2014, 160(6): 389-397. DOI: 10.7326/M13-2486.
Since September 2012, 170 confirmed infections with Middle East respiratory syndrome coronavirus (MERS-CoV) have been reported to the World Health Organization, including 72 deaths. Data on critically ill patients with MERS-CoV infection are limited.To describe the critical illness associated with MERS-CoV.Case series.3 intensive care units (ICUs) at 2 tertiary care hospitals in Saudi Arabia.12 patients with confirmed or probable MERS-CoV infection.Presenting symptoms, comorbid conditions, pulmonary and extrapulmonary manifestations, measures of severity of illness and organ failure, ICU course, and outcome are described, as are the results of surveillance of health care workers (HCWs) and patients with potential exposure.Between December 2012 and August 2013, 114 patients were tested for suspected MERS-CoV; of these, 11 ICU patients (10%) met the definition of confirmed or probable cases. Three of these patients were part of a health care-associated cluster that also included 3 HCWs. One HCW became critically ill and was the 12th patient in this case series. Median Acute Physiology and Chronic Health Evaluation II score was 28 (range, 16 to 36). All 12 patients had underlying comorbid conditions and presented with acute severe hypoxemic respiratory failure. Most patients (92%) had extrapulmonary manifestations, including shock, acute kidney injury, and thrombocytopenia. Five (42%) were alive at day 90. Of the 520 exposed HCWs, only 4 (1%) were positive.The sample size was small.MERS-CoV causes severe acute hypoxemic respiratory failure and considerable extrapulmonary organ dysfunction and is associated with high mortality. Community-acquired and health care-associated MERS-CoV infection occurs in patients with chronic comorbid conditions. The health care-associated cluster suggests that human-to-human transmission does occur with unprotected exposure.None.
[31]
Ghani RA, Zainudin S, Ctkong N, et al. Serum IL-6 and IL-1-ra with sequential organ failure assessment scores in septic patients receiving high-volume haemofiltration and continuous venovenous haemofiltration[J]. Nephrology (Carlton), 2006, 11(5): 386-393. DOI: 10.1111/j.1440-1797.2006.00600.x.
[32]
Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis[J]. J Infect Dis, 2015, 211(1): 80-90. DOI: 10.1093/infdis/jiu396.
Administration of convalescent plasma, serum, or hyperimmune immunoglobulin may be of clinical benefit for treatment of severe acute respiratory infections (SARIs) of viral etiology. We conducted a systematic review and exploratory meta-analysis to assess the overall evidence.Healthcare databases and sources of grey literature were searched in July 2013. All records were screened against the protocol eligibility criteria, using a 3-stage process. Data extraction and risk of bias assessments were undertaken.We identified 32 studies of SARS coronavirus infection and severe influenza. Narrative analyses revealed consistent evidence for a reduction in mortality, especially when convalescent plasma is administered early after symptom onset. Exploratory post hoc meta-analysis showed a statistically significant reduction in the pooled odds of mortality following treatment, compared with placebo or no therapy (odds ratio, 0.25; 95% confidence interval,.14-.45; I(2) = 0%). Studies were commonly of low or very low quality, lacked control groups, and at moderate or high risk of bias. Sources of clinical and methodological heterogeneity were identified.Convalescent plasma may reduce mortality and appears safe. This therapy should be studied within the context of a well-designed clinical trial or other formal evaluation, including for treatment of Middle East respiratory syndrome coronavirus CoV infection.© The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
[33]
van Griensven J, Edwards T, de Lamballerie X, et al. Evaluation of convalescent plasma for ebola virus disease in Guinea[J]. N Engl J Med, 2016, 374(1): 33-42. DOI: 10.1056/NEJMoa1511812.
[34]
Park BK, Maharjan S, Lee SI, et al. Generation and characterization of a monoclonal antibody against MERS-CoV targeting the spike protein using a synthetic peptide epitope-CpG-DNA-liposome complex[J]. BMB Rep, 2019, 52(6): 397-402.
Middle East respiratory syndrome coronavirus (MERS-CoV) uses the spike (S) glycoprotein to recognize and enter target cells. In this study, we selected two epitope peptide sequences within the receptor binding domain (RBD) of the MERS-CoV S protein. We used a complex consisting of the epitope peptide of the MERS-CoV S protein and CpG-DNA encapsulated in liposome complex to immunize mice, and produced the monoclonal antibodies 506-2G10G5 and 492-1G10E4E2. The western blotting data showed that both monoclonal antibodies detected the S protein and immunoprecipitated the native form of the S protein. Indirect immunofluorescence and confocal analysis suggested strong reactivity of the antibodies towards the S protein of MERS-CoV virus infected Vero cells. Furthermore, the 506-2G10G5 monoclonal antibody significantly reduced plaque formation in MERS-CoV infected Vero cells compared to normal mouse IgG and 492-1G10E4E2. Thus, we successfully produced a monoclonal antibody directed against the RBD domain of the S protein which could be used in the development of diagnostics and therapeutic applications in the future. [BMB Reports 2019; 52(6): 397-402].
[35]
Chen RC, Tang XP, Tan SY, et al. Treatment of severe acute respiratory syndrome with glucosteroids: the Guangzhou experience[J]. Chest, 2006, 129(6): 1441-1452. DOI: 10.1378/chest.129.6.1441.
[36]
Bernard GR, Luce JM, Sprung CL, et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome[J]. N Engl J Med, 1987, 317(25): 1565-1570. DOI: 10.1056/NEJM198712173172504.
PDF(3777 KB)

1758

Accesses

0

Citation

Detail

Sections
Recommended

/